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Preface

The motor car is over one hundred years old. The suspension is an important part of its design, and there
have been many research papers and several books on the topic. However, suspension analysis and design
are so complex and bring together so many fields of study that they seem inexhaustible. Certainly, the
number of different suspension designs that have been used over the years is considerable, and each one
was right for a particular vehicle in that designer’s opinion. This breadth of the field, at least, is a
justification for another book. It is not that the existing ones are not good, but that new perspectives are
possible, and often valuable, and there are new things to say. Here, the focus is on the most fundamental
aspect of all, the geometry of the road, the vehicle and the suspension, the basic measurement which is the
foundation of all subsequent dynamic analysis.

The process of modern engineering has been deeply affected by the computer, not always for the better
because analytical solutions may be neglected with loss of insight to the problem. In this case the solution
of complex three-dimensional geometrical problems is greatly facilitated by true coordinate geometry
solutions or by iteration, methods which are discussed here in some detail.

In principle, geometry is not really conceptually difficult. Wrestling with actual problems shows
otherwise. Analytical geometry, particularly on the computer with its many digits of precision,
mercilessly shows up any approximations and errors, and, surprisingly, often reveals incomplete
understanding of deep principles.

New material presented in detail here includes relationships between bump, heave and roll coefficients
(Table 8.10.1), detailed analysis of linear and non-linear bump steer, design methods for determining
wishbone arm lengths and angles, methods of two-dimensional and three-dimensional solutions of
suspension-related geometry, and details of numerical iterative methods applied to three-dimensional
suspensions, with examples.

Asin my previous work, I have tried to present the basic core of theory and practice, so that the book will
be of lasting value. I would be delighted to hear from readers who wish to suggest any improvements to
presentation or coverage.

John C. Dixon.
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Introduction and History

1.1 Introduction

To understand vehicle performance and cornering, it is essential to have an in-depth understanding of the
basic geometric properties of roads and suspensions, including characteristics such as bump steer, roll
steer, the various kinds of roll centre, and the relationships between them.

Of course, the vehicle is mainly a device for moving passengers or other payload from A to B, although
in some cases, such as a passenger car tour, a motor race or rally, it is used for the interest of the movement
itself. The route depends on the terrain, and is the basic challenge to be overcome. Therefore road
characteristics are examined in detail in Chapter 2. This includes the road undulations giving ride quality
problems, and road lateral curvature giving handling requirements. These give rise to the need for
suspension, and lead to definite requirements for suspension geometry optimisation.

Chapter 3 analyses the geometry of road profiles, essential to the analysis of ride quality and handling on
rough roads. Chapter 4 covers suspension geometry as required for ride analysis. Chapter 6 deals with
steering geometry. Chapters 6-9 study the geometry of suspensions as required for handling analysis,
including bump steer, roll steer, camber, roll centres, compliance steer, etc., in general terms.

Subsequent chapters deal with the properties of the main particular types of suspension, using the
methods introduced in the earlier chapters. Then the computational methods required for solution of
suspension geometry problems are studied, including two- and three-dimensional coordinate geometry,
and numerical iteration.

This chapter gives an overview of suspensions in qualitative terms, with illustrations to show the main
types. It is possible to show only a sample of the innumerable designs that have been used.

1.2 Early Steering History

The first common wheeled vehicles were probably single-axle hand carts with the wheels rotating
independently on the axle, this being the simplest possible method, allowing variations of direction
without any steering mechanism. This is also the basis of the lightweight horse-drawn chariot, already
important many thousands of years ago for its military applications. Sporting use also goes back to
antiquity, as illustrated in films such as Ben Hur with the famous chariot race. Suspension, such as it was,
must have been important for use on rough ground, for some degree of comfort, and also to minimise the
stress of the structure, and was based on general compliance rather than the inclusion of special spring
members. The axle can be made long and allowed to bend vertically and longitudinally to ride the bumps.
Another important factor in riding over rough roads is to use large wheels.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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Figure 1.2.1 Steering: (a) basic cart steering by rotating the whole axle; (b) Langensperger’s independent steering
of 1816.

For more mundane transport of goods, a heavier low-speed two-axle cart was desirable, and this
requires some form of steering mechanism. Initially this was achieved by the simple means of allowing the
entire front axle to rotate, as shown in Figure 1.2.1(a).

Figure1.2.2 Ackermann steering effect achieved by two cams on L’Obeissante, designed by Amedée Bollée in 1873.
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Figure 1.2.3 Ackermann steering effect achieved with parallel steering arms, by using angled drive points at the inner
end of the track rods: ‘La Mancelle’, 1878.

Steering by the movement of the whole axle gives good geometric positioning, with easy low-speed
manoeuvring, but the movement of the axle takes up useful space. To overcome this, the next stage was to
steer the wheels independently, each turning about an axis close to the wheel. The first steps in this
direction were taken by Erasmus Darwin (1731-1802), who had built a carriage for his doctor’s practice,
allowing larger-diameter wheels of great help on the rough roads. However, if the two wheels are steered
through the same angle then they must slip sideways somewhat during cornering, which greatly increases
the resistance to motion in tight turns. This is very obvious when a parallel-steered cart is being moved by
hand. To solve this, the two wheels must be steered through different angles, as in Figure 1.2.1(b).
The origin of this notion may be due to Erasmus Darwin himself in 1758, or to Richard Edgeworth, who
produced the earliest known drawing of such a system. Later, in 1816 Langensperger obtained a German
patent for such a concept, and in 1817 Rudolf Ackermann, acting as Langensperger’s agent, obtained a
British patent. The name Ackermann has since then been firmly attached to this steering design. The first
application of this steering to a motor vehicle, rather than hand or horse-drawn carts, was by Edward
Butler. The simplest way to achieve the desired geometry is to angle the steering arms inwards in the
straight-ahead position, and to link them by a tie rod (also known as a track rod), as was done by
Langensperger. However, there are certainly other methods, as demonstrated by French engineer Amedée
Bollée in 1873, Figure 1.2.2, possibly allowing a greater range of action, that is, a smaller minimum
turning circle.

The ‘La Mancelle’ vehicle of 1878 (the name refers to a person or thing from Le Mans) achieved the
required results with parallel steering arms and a central triangular member, Figure 1.2.3. In 1893 Benz
obtained a German patent for the same system, Figure 1.2.4. This shows tiller control of the steering, the
common method of the time. In 1897 Benz introduced the steering wheel, a much superior system to the
tiller, for cars. This was rapidly adopted by all manufacturers. For comparison, it is interesting to note that
dinghies use tillers, where it is suitable, being convenient and economic, but ships use a large wheel, and
aircraft use a joystick for pitch and roll, although sometimes they have a partial wheel on top of a joystick
with only fore—aft stick movement.

1.3 Leaf-Spring Axles

Early stage coaches required suspension of some kind. With the limited technology of the period, simple
wrought-iron beam springs were the practical method, and these were made in several layers to obtain the
required combination of compliance with strength. These multiple-leaf springs became known simply as
leaf springs. To increase the compliance, a pair of leaf springs were mounted back-to-back. They were
curved, and so then known, imprecisely, as elliptical springs, or elliptics for short. Single ones were called
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Figure 1.2.4 German patent of 1893 by Benz for a mechanism to achieve the Ackermann steering effect, the same
mechanism as La Mancelle.

semi-elliptics. In the very earliest days of motoring, these were carried over from the stage coaches as the
one practical form of suspension, as may be seen in Figure 1.3.1.

The leaf spring was developed in numerous variations over the next 50 years, for example as in
Figure 1.3.2. Withimproving quality of steels in the early twentieth century, despite the increasing average

G. B. Selden - Road engine
No. 549,160 - 5 November 1895

1 Rear

Figure 1.3.1 Selden’s 1895 patent showing the use of fully-elliptic leaf springs at the front A and rear B. The steering
wheel is C and the foot brake D.
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Figure 1.3.2 Some examples of the variation of leaf springs in the early days. As is apparent here, the adjective
‘elliptical’ is used only loosely.

weight of motor cars, the simpler semi-elliptic leaf springs became sufficient, and became widely
standardised in principle, although with many detailed variations, not least in the mounting systems,
position of the shackle, which is necessary to permit length variation, and so on. The complete vehicle of
Figure 1.3.3 shows representative applications at the front and rear, the front having a single compression
shackle, the rear two tension shackles. A very real advantage of the leaf spring in the early days was that the
spring provides lateral and longitudinal location of the axle in addition to the springing compliance action.
However, as engine power and speeds increased, the poor location geometry of the leaf spring became an
increasing problem, particularly at the front, where the steering system caused many problems in bump
and roll. To minimise these difficulties, the suspension was made stiff, which caused poor ride quality.

Figures 1.3.4 and 1.3.5 show representative examples of the application of the leaf spring at the rear of
normal configuration motor cars of the 1950s and 1960s, using a single compression shackle.

Greatly improved production machinery by the 1930s made possible the mass production of good
quality coil springs, which progressively replaced the leaf spring for passenger cars. However, leaf-spring
use on passenger cars continued through into the 1970s, and even then it functioned competitively, at the
rear at least, Figure 1.3.6. The leaf spring is still widely used for heavily loaded axles on trucks and military
vehicles, and has some advantages for use in remote areas where only basic maintenance is possible, so
leaf-spring geometry problems are still of real practical interest.

Figure 1.3.3 Grand Prix car of 1908, with application of semi-elliptic leaf springs at the front and rear (Mercedes-Benz).
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w1

Spring
eye pin

Rubber bush ==z <—— Rubber packing
Rollers T Metal housing

<—— Lower clamp plate

Figure 1.3.4 A representative rear leaf-spring assembly (Vauxhall).

At the front, the leaf spring was much less satisfactory, because of the steering geometry difficulties
(bump steer, roll steer, brake wind-up steering effects, and shimmy vibration problems). Figure 1.3.7
shows a representative layout of the typical passenger car rigid-front-axle system up to about 1933.
In bump, the axle arc of movement is centred at the front of the spring, but the steering arm arc is centred at

e 13

34 a3

Q) ot
@@v? L

3233 ;a1

Figure 1.3.5 A 1964 live rigid rear axle with leaf springs, anti-roll bar and telescopic dampers. The axle clamps on
top of the springs (Maserati).
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Figure 1.3.6 Amongst the last of the passenger car leaf-spring rear axles used by a major manufacturer was that of the
Ford Capri. Road testers at the time found this system in no way inferior to more modern designs.

the steering box. These conflicting arcs give a large and problematic bump steer effect. The large bump
steer angle change also contributed to the shimmy problems by causing gyroscopic precession moments
on the wheels. Figure 1.3.8 shows an improved system with a transverse connection.

Truck and van steering with a leaf spring generally has the steering box ahead of the axle, to give the
maximum payload space, as seen in Figure 1.3.9. In bump, the arc of motion of the steering arm and the
axle on the spring are in much better agreement than with the rear box arrangement of Figure 1.3.7, so
bump steer is reduced. Also, the springs are likely to be much stiffer, with reduced range of suspension
movement, generally reducing the geometric problems.

Steering wheel 7\ Knuckle”” ] | |-~ Steering arm
pin Iirame
I I = simd
=
Steering Steering
gear column Axle
| — i
% Steering gear arm
f-._ Sleerng ged Drag-link arm .__ 1
Drag link n J *- Drag link

( D)

* Steering arm

Figure 1.3.7 Classical application of the rigid axle at the front of a passenger car, the normal design up to 1933.
Steering geometry was a major problem because of the variability of rigid axle movements.
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Steering box

Stub axle

Steering arm

I \
Wheel hub (upright)

Figure 1.3.8 Alternative application of the rigid axle at the front of a passenger car, with a transverse steering link
between the steering box on the sprung mass and the axle, reducing bump steer problems.

Figure 1.3.9 Van or truck steering typically has a much steeper steering column with a steering box forward of the
axle, as here. The steering geometry problems are different in detail, but may be less overall because a stiffer suspension
is more acceptable.

1.4 Transverse Leaf Springs

Leaf springs were not used only in longitudinal alignment. There have been many applications with
transverse leaf springs. In some cases, these were axles or wheel uprights located by separate links, to
overcome the geometry problems, with the leaf spring providing only limited location service, or only the
springing action. Some transverse leaf examples are given in Figures 1.4.1-1.4.4
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Figure 1.4.1 A transverse leaf spring at the top also provides upper lateral and longitudinal location on this front axle,
with a lower wishbone (early BMW).

Figure 1.4.2 This more modern small car front suspension has a transverse leaf spring at the bottom with an upper
wishbone (Fiat).

Figure 1.4.3 Two transverse leaf springs providing complete hub location acting as equal-length wishbones without
any additional links (1931, Mercedes Benz).
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Figure 1.4.4 The Cottin-Desgouttes of 1927 used four leaf springs on the driven rear axle, in a square configuration,
also featuring inboard brakes. The parallel pair of springs at the top or bottom acted as equal-length wishbones, with
length equal to three-quarters of the cantilever length. The driveshaft length can be chosen to match this length, to
minimise the plunge requirement at the splines. The wheels have 2.5° static camber but do not rotate in bump (zero bump
camber).

1.5 Early Independent Fronts

Through the 1920s, the rigid axle at the front was increasingly a problem. Despite considerable thought
and experimentation by suspension design engineers, no way had been found to make a steering system
that worked accurately. In other words, there were major problems with bump steer, roll steer and
spring wind-up, particularly during braking. Any one of these problems might be solved, but not all at
once. With increasing engine power and vehicle speeds, this was becoming increasingly dangerous, and
hard front springs were required to ameliorate the problem, limiting the axle movement, but this caused
very poor ride comfort. The answer was to use independent front suspension, for which a consistently
accurate steering system could be made, allowing much softer springs and greater comfort. Early
independent suspension designs were produced by André Dubonnet in France in the late 1920s, and a little
later for Rolls-Royce by Donald Bastow and Maurice Olley in England. These successful applications of
independent suspension became known in the USA, and General Motors president Alfred P. Sloan took
action, as he describes in his autobiography (Sloan, 1963).

Around 1930, Sloan considered the problem of ride quality as one of the most pressing and most
complex in automotive engineering, and the problem was getting worse as car speeds increased. The early
solid rubber tyres had been replaced by vented thick rubber, and then by inflated tyres. In the 1920s, tyres
became even softer, which introduced increased problems of handling stability and axle vibrations. On a
trip to Europe, Sloan met French engineer André Dubonnet who had patented a successful independent
suspension, and had him visit the US to make contact with GM engineers. Also, by 1933 Rolls-Royce
already had an independent front suspension, which was on cars imported to the USA. Maurice Olley, who
had previously worked for Rolls-Royce, was employed by GM, and worked on the introduction of
independent suspensions there. In Sloan’s autobiography, a letter from Olley describes an early ride meter,
which was simply an open-topped container of water, which was weighed after a measured mile at various
speeds. Rolls-Royce had been looking carefully at ride dynamics, including measuring body inertia,
trying to get a sound scientific understanding of the problem, and Olley introduced this approach at GM. In
1932 they built the K-squared rig (i.e. radius of gyration squared), a test car with various heavy added
masses right at the front and rear to alter the pitch inertia in a controlled way. This brought home the
realisation that a much superior ride could be achieved by the use of softer front springs, but soft springs
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caused shimmy problems and bad handling. Two experimental Cadillac cars were built, one using
Dubonnet’s type of suspension, the other with a double-wishbone (double A-arm) suspension of GM’s
design. The engineers were pleased with the ride and handling, but shimmy steering vibration was a
persistent problem requiring intensive development work. In March 1933 these two experimental cars
were demonstrated to GM’s top management, along with an automatic transmission. Within a couple of
miles, the ‘flat ride’ suspension was evidently well received.

March 1933 was during the Great Depression, and financial constraints on car manufacturing and retail
prices were pressing, but the independent front suspension designs were enthusiastically accepted, and
shown to the public in 1934. In 1935 Chevrolet and Pontiac had cars available with Dubonnet
suspension, whilst Cadillac, Buick and Oldsmobile offered double-wishbone front suspension, and the
rigid front axle was effectively history, for passenger cars at least. A serious concern for production was the
ability of the machine tool industry to produce enough suitable centreless grinders to make all the coil
springs that would be required. With some practical experience, it became apparent that with development
the wishbone suspension was easier and cheaper to manufacture, and also more reliable, and was
universally adopted.

Figure 1.5.1 shows the 1934 Cadillac independent suspension system, with double wishbones on
each side, in which it may be seen that the basic steering concept is recognisably related to the ones
described earlier. As covered in detail in Chapter 6, the track-rod length and angle can be adjusted to
give good steering characteristics, controlling bump steer and roll steer. The dampers were the lever-
operated double-piston type, incorporated into the upper wishbone arms. Such a system would still be
usable today.

Figure 1.5.2 shows the Dubonnet type suspension, used by several other manufacturers, which was
unusually compact. The wheels are on leading or trailing arms, with the spring contained in a tube on the

Upper suspension and damper arms

Intermediate steering arm

Steering knuckle
support

Steering
knuckle
Tie rod end
Lower
suspension arm

Steering arm

Steering
connecting rod

Figure 1.5.1 The new Cadillac steering and independent suspension of 1934.
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Figure 1.5.2 The Dubonnet type suspension in plan view, front at the top: (a) with trailing links; (b) with leading links
(1938 Opel).

Figure 1.5.3 Broulhiet ball-spline sliding pillar independent suspension.
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steerable part of the system. The type shown has a single tie rod with a steering box, as was usual then, but
the system is equally adaptable to a steering rack. The Ackermann effect is achieved here by angling the
steering arms backwards and inwards in Figure 1.5.2(a) with the trailing arms, or forwards and outwards in
Figure 1.5.2(b) with the leading arms. The steering action is entirely on the sprung mass, so there is no
question of bump or roll steer due to the steering, and there are no related issues over the length of the
steering members. Bump steer effects depend only on the angle of the pivot axis of the arms, in this case
simply transverse, with zero bump steer and zero bump camber. Other versions had this axis at various
angles. The leading link type at the front of a vehicle gives considerable anti-dive in braking, but is harsh
over sharp bumps. The trailing-arm version is better over sharp bumps but has strong pro-dive in braking.

Another early form of independent suspension was that due to Brouhliet in France, who used sliding
splines, with ball bearings for low friction, for the suspension action, Figure 1.5.3, again allowing the
steering to be entirely sprung, eliminating the steering problems of the rigid front axle.

1.6 Independent Front Suspension

Some independent suspensions have already been shown. Section 1.4 illustrates some with transverse leaf
springs. Section 1.5 shows two from the mid 1930s — the Dubonnet, now effectively defunct, and the
double wishbone which was the de facto standard front suspension for many years, although now that
could be perhaps be said instead of the strut and wishbone. Subsequent to the leaf spring, torsion bar
suspensions were quite common. However, the modern independent suspension is almost invariably based
on the coil spring, with location by two wishbones (A-arms) or by a strut with one wishbone at the bottom.

Figure 1.6.1 shows a sliding pillar suspension, not representative of common modern practice, but this
was an early success of some historical interest. With the spring and damper unit enclosed, it was very

Figure 1.6.1 Sliding pillar front suspension (Lancia Lambda).
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reliable, particularly compared with other designs of the early days. When introduced, this was regarded
by the manufacturer as the best suspension design regardless of cost.

Figure 1.6.2 shows various versions and views of the twin parallel-trailing-arm suspension, which most
often used torsion-bar springing in the cross tubes. On the Gordon-Armstrong this could be supplemented
with, or replaced by, coils springs used in compression with draw bars, with double action on the spring.
Again, this was a very compact system. The steering can be laid out to give zero bump steer, as in the Aston
Martin version of Figure 1.6.2(d), or even with asymmetrical steering as in Figure 1.6.2(a).

A transverse single swing-arm type of front suspension can be used, as in Figure 1.6.3, but with lower
body pivot points than the usual driven rear swing axle, giving a lower roll centre. There is a large bump
camber effect with this design, such as to effectively eliminate roll camber completely. Steering is by

Figure 1.6.2 Parallel-trailing-arm front suspension: (a) general front view (VW); (b) rear three-quarter view of
torsion bar type construction; (c) parallel-trailing-arm suspension with laid-down compression coil spring and tension
bar (Gordon-Armstrong); (d) steering layout for parallel-trailing-arm system, plan view (early Aston Martin).
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Figure 1.6.3 Single transverse swing-arm independent front suspension with rack-and-pinion steering (1963
Hillman).

rack-and-pinion, with appropriately long track rods, giving no bump steer, this requiring the pick-up
points on the rack to be aligned with the arm pivot axes in the straight-ahead position. Unusually, the track-
rod connections are on the rear of the rack, which affects only the plan view angle of the track rods, and
hence the Ackermann factor.

The Glas Isar had double wishbones, as seen in Figure 1.6.4, but the upper wishbone had its pivot axis
transverse, so in front view the geometry was similar to a strut-and-wishbone suspension. The steering
system is high up, and asymmetrical. Analysis of bump steer requires a full three-dimensional solution, but
with the asymmetrical steering on this design there could be problems unless the track-rod connections to
the steering box arm are aligned with the upper wishbone axes.

Some early double-wishbone systems were very short, particularly on racing cars, as in Figure 1.6.5.
With the relatively long track rod shown there would have been significant bump steer, which could have
been only marginally acceptable by virtue of the stiff suspension and small suspension deflections. This
makes an interesting contrast with the very long wishbones on modern racing cars, although in that case
the deflections are still small and it is done for different reasons.

Figure 1.6.4 A double-wishbone suspension in which the wishbone axes are crossed (Glas Isar).
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Figure 1.6.5 An early double-wishbone system with very short arms (Mercedes Benz). The suspension spring is
inside the transverse horizontal tube.

Figure 1.6.6 shows an engineering section of a fairly representative double-wishbone system, with
unequal-length arms, nominally parallel in the static position. As is usual with double wishbones, the
spring acts on the lower arm at a motion ratio of about 0.5. The steering axis is defined by ball joints rather
than by the old kingpin system, with wide spacing giving lower joint loads.

In Figure 1.6.7, a more recent double-wishbone system, the upper wishbone is partially defined by the
rear-mounted anti-roll bar. The steering arms are inclined to the rear as if to give an Ackermann effect, but
the track rods are also angled (see Chapter 5). The offset connections on the steering box and idler arm give
some Ackermann effect.

The modern double-wishbone system of Figure 1.6.8 is different in that the spring acts on the upper
wishbone, with vertical forces transmitted into the body at the top of the wheel arch in the same way as for a
strut. However, despite the spring position this is certainly not a strut suspension, which is defined by a
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Figure 1.6.6 Traditional configuration of passenger car double-wishbone suspension, with the spring and damper
acting on the lower wishbone (Jaguar).
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(a)

(b)

Figure 1.6.7 A passenger car double-wishbone system with a wide-base lower wishbone, and the upper wishbone
partially defined by the anti-roll bar (Mercedes Benz).

rigid camber connection between the wheel upright and the strut. The steering connections are to the ends
of the rack, to give the correct track-rod length to control bump steer.

The commercial vehicle front suspension of Figure 1.6.9 is a conventional double-wishbone system
with a rear-mounted anti-roll bar, and also illustrates the use of a forward steering box and steep steering

Figure 1.6.8 A representative modern double-wishbone suspension, with spring and damper acting on the upper arm
(Renault). This is not a strut suspension.
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Figure 1.6.9 A double wishbone system from a light commercial vehicle, also illustrating a forward steering
system (VW).

Nov. 24, 1953  E s. MacPHERSON 2,660,449
/4 WHEEL SUSPENSION FOR MOTOR VEHICLES
Filed Jan. 27, 1949

ESMacPHERSON
INVENTOR

Figure 1.6.10 MacPherson’s 1953 US patent for strut suspension (front shown).
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Figure 1.6.11 Passenger car strut suspension with wide-based lower wishbone and low steering (VW).

column on this kind of vehicle. Again, the tie rod and idler arm allow the two track rods to be equal in
length and to have correct geometry for the wishbones.

Finally, Figure 1.6.10 shows the MacPherson patent of 1953 for strut suspension, propsed for use at
the front and the rear. A strut suspension is one in which the wheel upright (hub) is controlled in camber by
arigid connection to the strut itself. This was popularised for front suspension during the 1950s and 1960s
by Ford, with the additional feature that the function of longitudinal location was combined with an
anti-roll bar. Strut suspension lacks the adaptability of double-wishbone suspension to desired geometric
properties, but can be made acceptable whilst giving other benefits. The load transmission into the body is

Figure 1.6.12 Passenger car strut suspension with wide-based lower wishbone and high steering (Opel).



20 Suspension Geometry and Computation

widely spread, and pre-assembled units of the suspension can be fitted to the body in an efficient manner on
the final assembly line.

Figures 1.6.11 and 1.6.12 give two more modern examples, in fact of strut-and-wishbone suspensions,
normally just called strut suspensions, as now so commonly used on small and medium passenger
vehicles. The two illustrations show conventional struts. In contrast, a Chapman strut is a strut suspension
with a driveshaft, the shaft providing the lateral location of the bottom member, this requiring and allowing
no length change of the driveshaft, eliminating a number of problems such as sticking splines under load
(see Figure 1.10.7). In Figure 1.6.11 the steering rack is low, close to the level of the wishbone, and
the track-rod connections are, correspondingly, at the ends of the rack, to give the correct track-rod length.
In Figure 1.6.12 the steering is higher, at the level of the spring seat, so for small bump steer the track rods
must be longer, and are connected to the centre of the rack.

1.7 Driven Rigid Axles

The classic driven rigid rear axle, or so-called ‘live axle’, is supported and located by two leaf springs, in
which case it is called a ‘Hotchkiss axle’, as shown previously in Figures 1.3.5 and 1.3.6. Perhaps due to
the many years of manufacturers’ experience of detailing this design, sometimes it has been implemented
with great success. In other cases, there have been problems, such as axle tramp, particularly when high
tractive force is used. To locate the axle more precisely, or more firmly, sometimes additional links are
used, such as the longitudinal traction bars above the axle in Figure 1.7.1, opposing pitch rotation. These
used to be a well-known aftermarket modification for some cars, but were often of no help. In other cases,
the leaf springs have been retained as the sole locating members but with the springing action assisted by
coils, as in Figure 1.7.2, giving good load spreading into the body.

However, with the readier availability of coil springs, in due course the rear leaf-spring axle finally
disappeared from passenger cars, typically being replaced by the common arrangement of Figure 1.7.3,
with four locating links, this system being used by several manufacturers. The two lower widely-spaced
parallel links usually also carry the springs, as this costs less boot (trunk) space than placing them directly
on the axle. Lateral positioning of the axle is mainly by the convergent upper links, although this gives
rather a high roll centre. The action of axle movement may not be strictly kinematic, and may depend to
some extent on compliance of the large rubber bushes that are used in each end of the links.

The basic geometry of the four-link system is retained in the T-bar system of Figure 1.7.4, with the
cross-arm of the T located between longitudinal ribs on the body, allowing pivoting with the tail of the T,
connected to the axle, able to move up and down in an arc in side view. This gives somewhat more precise
location than the four-link system, and requires less bush compliance for its action, but again the roll centre
is high, satisfactory for passenger cars, but usually replaced by a sliding block system for racing versions
of these cars.

Figure 1.7.1 Leaf-spring axle with the addition of traction bars above the axle (Fiat).
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Figure 1.7.2 Leaf-spring axle with additional coil springs (Fiat).
Drive shaft

Figure 1.7.3 Widely-used design of four-link location axle (Ford).

Figure 1.7.4 Alfa-Romeo T-bar upper lateral location.



22 Suspension Geometry and Computation

Figure 1.7.5 Rear axle with torque tube and Panhard rod (Opel).

There have, of course, been many other lateral location systems for axles, including the Panhard rod and
the Watt’s linkage, shown in Figures 1.7.5 and 1.7.6, respectively.

The rigid axle is sometimes fitted with a rigid tube going forward to a cross member in which it can
rotate as in a ball joint. This, perhaps confusingly, is called a ‘torque tube’, presumably because it reacts to
the pitch effect of torque in the driveshafts acting on the wheels. It does give very good location of the axle
in pitch. Additional lateral location is required at the rear, such as by a Panhard rod as in Figure 1.7.5. In the
similar torque tube system of Figure 1.7.6 the rear lateral location is by a Watt’s linkage. Generally, the
torque tube arrangement is a superior but more costly design used on more expensive vehicles.

Cross member

Propeller
shaft

Watt’s linkage
lateral location
Radius arm

Figure 1.7.6 Axle with torque tube and Watt’s linkage (Rover).
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Figure 1.8.1 De Dion axle: (a) front three-quarter view; (b) rear elevation; (c) plan view (1969 Opel).
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1.8 De Dion Rigid Axles

The de Dion design is an old one going back to the earliest days of motoring. In this axle, the two wheel hubs are
linked rigidly together, but the final drive unit is attached to the body, so the unsprung mass is greatly reduced
compared to a conventional live axle, Figure 1.8.1. Driveshaft length must be allowed some variation, for
example by splines. The basic geometry of axle location is the same as that of a conventional axle.

Figure 1.8.2 shows a slightly different version in which the wheels are connected by a large sliding tube
permitting some track variation, so that the driveshafts can be of constant length.

In general, the de Dion axle is technically superior to the normal live axle, but more costly, and so has
been found on more expensive vehicles.

Figure 1.8.2 De Dion axle variation with sliding-tube variable track (1963 Rover).

1.9 Undriven Rigid Axles

Undriven rigid axles, used at the rear of front-drive vehicles, have the same geometric location
requirements as live rigid axles, but are not subject to the additional forces and moments of the drive
action, and can be made lower in mass. Figure 1.9.1 is a good example, with two lower widely-spaced

Figure 1.9.1 Simple undriven rigid axle (Renault).
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Figure 1.9.2 Undriven rigid axle with diagonal lateral location (Audi).

longitudinal arms and a single upper link for lateral and pitch location. The arms are linked by an anti-roll
bar. The roll centre is high.

In Figure 1.9.2, lateral location is by the long diagonal member. This form eliminates the lateral
displacements in bump of the Panhard rod. If the longitudinal links are fixed rigidly to the axle then the axle
acts in torsion as an anti-roll bar, the system then being a limiting case of a trailing-twist axle.

The undriven axle of Figure 1.9.3 has location at each side by a longitudinal Watt’s linkage, giving a
truer linear vertical movement to the wheel centre than most systems, and also affecting the pitching angle
of the hub, introducing an axle torsion anti-roll bar effect, but in a non-linear way.

Figure 1.9.3 Undriven rigid axle with longitudinal Watt’s linkages and Panhard rod (Saab).
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Figure1.9.4 Rigid axle with diagonal lateral location and torsion bar springing, plan view (nascent trailing-twist axle)
(Citroén).

Figure 1.9.4 shows a system with trailing arms operating half-width torsion bars, and with a short
diagonal link for lateral location. If the trailing arms are fixed to the axle then in roll the axle will deflect
torsionally, giving an anti-roll bar effect, whilst the thin trailing arms deflect relatively freely. This is another
example of a limiting case of a trailing-twist axle, with the cross member at the wheel position.

Figure 1.9.5 shows a modern rigid axle with location system designed to give controlled side-force
oversteer, the axle being able to yaw slightly about the front location point, according to the stiffness of the
bushes in the outer longitudinal members.

Figure 1.9.5 Tubular-structure undriven rigid axle with forward lateral location point and two longitudinal links
(Lancia).

1.10 Independent Rear Driven

In the early days, most road vehicles had a rear drive, using a rigid axle. There were, however, some
adventurous designers who tried independent driven suspension, such as on the Cottin-Desgoutes, which
was shown in Figure 1.4.4. The most common early independent driven suspension was the simple swing
axle, which has the advantage of constant driveshaft lengths, and low unsprung mass. The driveshafts can
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Figure 1.10.1 Swing axle with long leading links for longitudinal location (Renault).

swing forward so they require some extra location. Initially, a simple longitudinal pivot was used.
Sometimes the supporting member had pivot points both in front of and behind the driveshaft.
Figure 1.10.1 shows one with a single, forward, link. The swing axle has a large bump camber and
little roll camber. The roll centre is not as high as with many rigid axles, but it is more of a problem because
with a high roll centre on independent suspension there is jacking, which in extremis can get out of control
with the outer wheel tucking under.

To overcome the problem of the roll centre of the basic swing axle, a low-pivot swing axle may be used,
as in Figure 1.10.2, now requiring variable-length driveshafts by splines or doughnuts. The bottom pivots
are offset slightly, longitudinally. This is still considered to be a swing axle because the axis of pivot of the
axle part is longitudinal.

The obvious alternative to the swing axle is to use simple trailing arms, with the pivot axis perpendicular
to the vehicle centre plane and parallel to the driveshafts. Again, this requires allowance for length

Figure 1.10.2 Low-pivot swing axle with inboard brakes (Mercedes Benz).
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Figure 1.10.3 Plain trailing arms with 90° transverse axis of pivot (Matra Simca).

variation, a significant complication, Figure 1.10.3. In the example shown, the springing is by half-width
torsion bars anchored at the vehicle centreline. There is also an anti-roll bar.

The next development, introduced in 1951, was the semi-trailing arm in which the arm pivot axis is a
compromise between the swing axle and the plain trailing arm, typically in the range 15° to 25°, as in
Figure 1.10.4. A more recent and simpler semi-trailing arm system is shown in Figure 1.10.5. Bump
camber is greatly reduced compared with the swing axle.

To control the geometric properties more closely to desired values, a double wishbone system may be
used, although this is less compact and on the rear of a passenger car it is detrimental to luggage space, but
it is very widely used on sports and racing cars. Figure 1.10.6 shows an example sports car application,
where the camber angle and the roll centre height were made adjustable.

Figure 1.10.4 The first semi-trailing-arm design, also with transaxle and inboard brakes: (a) plan view; (b) front three-
quarter view (1951 Lancia).
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Figure 1.10.5 Semi-trailing arms (BMW).

The Chapman strut is a strut suspension in which the lower lateral location is provided by a fixed-length
driveshaft. Figure 1.10.7 gives an example. Lower longitudinal location must also be provided, as seen in
the forward diagonal arms which also, here, carry the springs.

Figure 1.10.8 shows the ‘Weissach axle’, which uses controlled compliance to give some toe-in on
braking, or on power lift-off, for better handling.

A relatively recent extension of the wishbone concept is to separate each wishbone into two separate
simple links. There are then five links in total, two for each wishbone and one steer angle link. This system
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Figure 1.10.6 Double-wishbone sports car suspension with diagonal spring—damper unit, roll centre height
dimensions in inches (Ford).



Suspension Geometry and Computation

30

—
e L)

I

)/ N WL
a3 PR T S S A
O S

(b
/.

Figure 1.10.7 Chapman strut with front link for longitudinal location: (a) rear elevation; (b) front three-quarter view

(Fiat).

Figure 1.10.8 ‘Weissach axle’ (Porsche).
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has been used at the front and the rear, and, with careful design, makes possible better control of the
geometric and compliance properties. Figure 1.10.9 shows an example. The advantages seem real for
driven rear axles, but undriven ones have not adopted this scheme. The concept has also been used at the
front for steered wheels.

Figure 1.10.9 Five-link (‘multilink’) suspension: (a) complete driven rear-axle unit; (b) perspective details of one
side with plan and front and side elevations (Mercedes Benz).
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Figure 1.11.1 Plain trailing arms, 90° pivot axis, coil springs (Simca).

1.11 Independent Rear Undriven

At the rear of a front-drive vehicle it seems quite natural and easy to use independent rear suspension.
Figures 1.11.1-1.11.4 give some examples.

The plain trailing arm with transverse pivot at 90° to the vehicle centre plane has often been used. The
original BMC Mini, on which it was used in conjunction with rubber suspension, was a particularly
compact example. A subframe is often used, as seen in Figure 1.11.1. Vertical coil springs detract from the
luggage compartment space, so torsion bars are attractive. For symmetry, these have a length of only
half of the track (tread), which is less than ideal. Figure 1.11.2 shows an example where slightly offset full-
length bars are used. The left and right wheelbases are slightly different, but this does not seem to be of
practical detriment.

Figure 1.11.2 Plain trailing arms, 90° pivot axis, offset torsion-bar springs, unequal wheelbases (Renault).
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Figure 1.11.3  Strut suspension with long twin lateral/yaw location arms and leading link for longitudinal location
(Lancia).

Figure 1.11.3 shows an independent strut rear suspension, the wheel-hub camber and pitch being
controlled by the spring—damper unit. Twin lateral arms control scrub (track change) and the steer angle.
The anti-roll bar has no effect on the geometry. Figure 1.11.4 shows another strut suspension, with a single
wide lateral link controlling the steer angle.

Figure 1.11.4  Strut suspension with wide lateral links and longitudinal links (Ford).
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Figure 1.12.1 A compound crank axle using torsion-bar springs (Renault).

1.12 Trailing-Twist Axles

The ‘trailing-twist’ axle, now often known as the ‘compound-crank’ axle, is illustrated in
Figures 1.12.1-1.12.3. The axle concept is good, but the new name is not an obvious improvement
over the old one. This design is a logical development of the fully-independent trailing-arm system.
Beginning with a simple pair of trailing arms, it is often desired to add an anti-roll bar. Originally, this was
done by a standard U-shaped bar with two mountings on the body locating the bar, but allowing it to twist.
Drop links connected the bar to the trailing arms. A disadvantage of this basic system was that the anti-roll
bar transmitted extra noise into the passenger compartment, despite being fitted with rubber bushes. This
problem was reduced by deleting the connections to the body, instead using two rubber-bushed
connections on each trailing arm, so that the bar was still constrained in torsion. This was then simplified

Figure 1.12.2 A compound crank axle with coil springs (Opel).
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Figure 1.12.3 A compound crank axle similar to that in Figure 1.12.2, also showing in (a) the body fixture brackets,
and in (b) the front elevation (Opel).

mechanically by making the two arms and the bar in one piece, requiring the now only semi-independent
axle to flex in bending and torsion. This complicated the geometry, but allowed a compact system that was
easy to install as a prepared unit at the final assembly stage. As seen in the figures, to facilitate the
necessary bending and torsion the cross member of the axle is an open section pressing. The compound
crank axle is now almost a standard for small passenger cars.

1.13 Some Unusual Suspensions

Despite the wide range of conventional suspensions already shown, many other strange and unusual
suspensions have been proposed, and patented, and some actually used, on experimental vehicles at least,
the designers claiming better properties of one kind or another, sometimes with justification. For most
vehicles, the extra complication is not justified. Some designs are presented here for interest, and as a
stimulus for thought, in approximate chronological order, but with no endorsement that they all work as
claimed by the inventors. Proper design requires careful consideration of equilibrium and stability of the
mechanism position, the kind of analysis which is usually conspicuously lacking from patents, which are
generally presented in vague qualitative and conceptual terms only. As the information about these
suspensions is mainly to be found in patent applications, engineering analysis is rarely offered in their
support, the claims are only qualitative. The functioning details of actual roll angles and camber angles and
the effect on handling behaviour are not discussed in the patents in any significant way.

There are many known designs of suspension with supplementary roll-camber coupling, that is, beyond
the basic roll camber normally occurring. So far, however, this has not been a very successful theme. The
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proposed systems add cost, weight and complexity, and often have packaging difficulties. Also, there does
not appear to have been a published analysis of the vehicle-dynamic handling consequences of such
systems to provide an adequate basis for design. Typically, where the expected use is on passenger
vehicles, the intention is to reduce or eliminate body roll, or even to bank the body into the corner, with
claims of improved comfort. Where racing applications are envisaged, the main concern is elimination of
adverse camber in roll.

Most of the suspensions discussed are of pure solid mechanical design. Such suspension design tends to
add undesirable weight, is usually bulky, and is therefore space-consuming with packaging problems.
Camber adjustment accomplished by lateral movement of the lower suspension arms causes adverse scrub
effects at the tyre contact patch which is probably not acceptable.

In the Hurley suspension, shown in Figure 1.13.1, a pendulum drives four hydraulic master cylinders in
two independent circuits to body roll and camber slave cylinders, the intention being to control both body
roll and wheel camber. Either system could be used alone. A serious problem here, as with many other
designs, is that an apparently reasonable kinematic design may fail to operate as expected, dynamically. In
this case, force and energy are to be provided by the pendulum. Instead, body roll and wheel camber may
simply force the pendulum over to the other side, unless it is sufficiently massive. One may also doubt the
practicality of the general configuration for normal service. However, the Hurley design is of great
historical interest.

In the Bennett ‘Fairthorpe TX-1’ suspension, Figure 1.13.2, the basically independent suspension has
trailing arms, but the wheel hubs have additional camber freedom by rotation on the arms, and there is a
crossed intercoupling not unlike cruciate ligaments. Double bump gives zero camber effect. Cornering
body roll is said to give wheel camber into the curve. Only in single wheel bump is the camber
characteristic considered to be less than ideal. An experimental version in racing was claimed to work
well. The characteristics are basically like a rigid axle.

In the Drechsel suspension, shown in Figure 1.13.3, the body is suspended from an intermediate
member, a mobile subframe, at each axle. The suspension is connected to the subframe. The body is
intended to roll into the corner, pivoting like a pendulum on the subframe, simultaneously adjusting the
wheel camber. Energy is provided by the outward motion of the body, which in effect provides a massive

Figure 1.13.1 Hurley suspensions, all in front view: (a) applied to independent suspension; (b) independent in right-
hand turn; (c) applied to an axle; (d) axle in right-hand turn (Hurley, 1939).
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Figure 1.13.2 ‘Fairthorpe TX-1" suspension (T. Bennett, 1965).

pendulum as an improvement to the Hurley separate-pendulum concept. There are two geometric roll
centres, one for the body on the subframe, the other for the suspension on the subframe.

The Trebron double roll centre (DRC) suspension, Figure 1.13.4, due to N. Hamy, is similar in operation
to the Drechsel concept, but with changes to the details. An adapted passenger car test vehicle operated
successfully, demonstrating negated chassis roll and camber change in cornering.

In the Bolaski suspension, shown in Figure 1.13.5, the operating principle is again similar to that of
Drechsel, using the body as a massive pendulum, but in this case the main body rests on compression links,
and in cornering is intended to deflect the central triangular member which in turn adjusts the wheel
camber by the lower wishbones. Bolaski limits his invention for application to front suspensions by the
title of this patent.

In the Parsons system, Figure 1.13.6, each axle has two mobile subframes. The body and the two
subframes have a common pivot as shown, but this is not an essential feature. The front suspension design
is expected to use struts. Each upper link, on rising in bump, pulls on the opposite lower wishbone,
changing the camber angle of that side. On the rear suspension design, with double wishbones, in bump the
rising lower link pushes the opposite upper wishbone out, having the same type of camber effect. In the
double-wishbone type shown, the spring as shown would give a negative heave stiffness, but this would be
used in conjunction with a pair of stiff conventional springs to give an equivalent anti-roll bar effect. Of
course, the springs shown are not an essential part of the geometry.

Figure 1.13.3 Drechsel suspension, rear view, left-hand cornering (Drechsel, 1956).
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Figure 1.13.4 Trebron DRC suspension rear views: (a) configuration, (b) in turn, (Hamy, 1968).

The Jeandupeux system, shown in Figure 1.13.7, has one mobile subframe at each axle, as a slider,
carrying the lower two wishbone inner pivots, giving simultaneous lateral shifting of the lower
wishbones. In addition there are extra links connecting to the upper wishbones. In cornering, the
wheel lateral forces produce forces in the lower wishbones, which move the slider subframe across,
turning the vertical rocker, and pulling the centre of the V across, tending to lift or lower the opposing
wheels, hence opposing the body roll and opposing camber change. In other words, there is a direct,
basically linear, relationship between lateral tyre force and consequent load transfer through the
mechanism, to be compared with the natural value for a simple suspension. With correct design, there
should be no roll in cornering. Double bump causes no camber because of the equal parallel wishbone

design.
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Figure 1.13.5 Bolaski suspension (Bolaski, 1967).

In contrast to the earlier suspensions, all claimed to be passive in action, the Phillippe suspension,
Figure 1.13.8, is declared to be an active system with power input from a hydraulic pump, with camber
control by hydraulic action on a slider linking the inner pivots of the upper wishbones. This is direct active
control of the geometry, quite different from the normal active suspension concept which replaces the usual
springs and dampers in the vertical action of the suspension. The light pendulum shown acts only as a sensor.

Figure 1.13.6 Parsons suspensions: (a) for the steerable front using struts; (b) for the driven rear using double
wishbones. Additional springs and dampers would be used on each wheel (Parsons, 1971).
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Figure 1.13.9 Pellerin suspension (Pellerin, 1997).

The Pellerin suspension is aimed specifically at formula racing cars which use front suspensions which
are very stiff in roll. These have sometimes used a mono-spring—damper suspension, the so-called
‘monoshock’ system, which is a suspension with a single spring—damper unit active in double bump, with
nominally no roll action in the suspension mechanism itself. The complete front roll stiffness then depends
mainly on the tyre vertical stiffness with some contribution from suspension compliance. In the Pellerin
system, Figure 1.13.9, the actuator plate of the spring—damper unit is vertically hinged, allowing some

(a)

(b)

L

Figure 1.13.10 Weiss PRCC suspension (springs not shown): (a) version 1, camber cylinders in wishbones; (b)
version 2, camber cylinder between the two wishbone pivots (Weiss, 1997).
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Figure 1.13.11 Walker ‘Camber Nectar’ suspension (Walker, 2003).

lateral motion of the pushrod connection point. The roll stiffness of the suspension mechanism is then
provided by the tension in the hinged link, and is dependent on the basic pushrod compression force, which
increases with vehicle speed due to aerodynamic downforce.

The Weiss passive roll-camber coupled (PRCC) system, shown in Figure 1.13.10, uses hydraulic
coupling of the wheel camber angle with body roll, in several configurations. Normal springs are retained.
Essentially, in cornering the tyre side forces are used to oppose body roll, and body forces oppose adverse
camber development, mediated by the hydraulics. Simple double bump moves the diagonal bump
cylinders, but these are cross coupled, so in this action they merely interchange fluid.

Finally, Figure 1.13.11 shows the Walker ‘Camber Nectar’ intercoupling system simply operating
between the upper wishbones, each of which is hinged at its inner end on a vertical rocker, the lower end of
which is coupled to a drive rod on top of the opposite wishbone. The basic wishbone geometry is such as to
give about 50% compensation of roll camber by the basic geometry and 50% by the action of the extra
links, so that double bump and roll both give zero camber change.

The above examples give at least a flavour of the many unconventional systems that have been
proposed. Many others may be found in the patent literature.
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Road Geometry

2.1 Introduction

The purpose of a vehicle is to go from A to B, moving the passengers or payload comfortably, safely
and expediently. Considering in general any surface of the globe, the terrain to be covered may vary
enormously. In fact, most of the Earth’s ground surface is difficult terrain for a conventional motor vehicle
due to roughness, swampiness, etc. Specialised ground vehicles are required over much of the area, in
some cases tracked, in less difficult cases a good all-wheel-drive vehicle. Obviously, to ease the problem
the surface has been improved along many frequently-used routes, with a vast capital investment in roads
which generally have a broken rock base and are surfaced with concrete in some cases, or with fine gravel
held together by very high viscosity tar.

The general form of the ground and roads varies greatly, as may readily be seen by studying a road map.
Figure 2.1.1(a) shows the contour map of a small section of Belgian pavé type rough road surface made
with stone blocks, which may be contrasted with the relatively smooth nature of good quality roads such a
motorways. Figure 2.1.1(b) shows a theoretically generated isotropic surface which is of similar character.

The shape of a road or desired path may be analysed in various ways, largely dependent on the
application. In handling analysis, the general geometric form is required, for example the path lateral
curvature, which governs the lateral tyre force requirement. On the other hand, in ride quality analysis it is
usual to think in terms of a Fourier spectral analysis of the road surface quality. This chapter deals
primarily with road geometry in conventional geometric terms, as is of use in performance and handling
analysis. The next chapter deals with the finer scale vertical perturbations of importance in comfort (ride
quality) analysis.

In general, the ground surface is defined by some sort of coordinate system. The Earth itself is a close
approximation to spherical, the sea-level reference surface being a slightly oblate spheroid due to the
diurnal rotation. The mean radius is 6371 km (SI units are described in Appendix B). The highest
mountain, Everest, is 8848 m above sea level, barely one-thousandth of the Earth’s radius. Locally, a
simple rectangular coordinate system may be used. The ISO vehicle-dynamics system has X forwards, Y to
the left and Zupwards. Consider, then, (X,Y) Earth-fixed coordinates, with the ground altitude Z, relative to
some defined reference plane, such as notional local sea level, being a function of X and Y, as in
Figure 2.1.2. (The notation used in each chapter is summarised in Appendix A.) In principle, this
effectively fully defines the surface shape, excepting the extreme case of overhangs, where Z is
multivalued. The ground is notionally a continuum, although really discrete at the molecular level. In
any case, the surface would normally be represented in a digital form of Z(X,Y) values. With modern
computation, the memory size available is large, and good resolution of ground shape is possible, obtained
by satellite global-positioning systems and other means.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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Figure 2.1.1 Road contour maps: (a) MIRA Belgian pavé test track; (b) theoretically generated isotropic surface.
Long dashes are contours below datum, short ones above (Cebon and Newland, 1984).

Nevertheless, the quality of the ground surface itself may be considered to be a separate feature from the
geographical ground shape, the distinction being at the scale depending on the vehicle, and is analysed for
its effect on tyre grip and ride quality rather than handling requirements. Thus the road shape on a small
scale, called the macrostructure and microstructure, which affects the tyre grip and aquaplaning, is
handled separately, as detailed in the next chapter.

Once a particular route is selected over the terrain, the nature of the representation of the surface
changes. In general, the road is defined by a band, of varying width, along the surface of the Earth. The road
surface is then a section of the complete surface, its edges being the limits of the usable surface. In a

Figure 2.1.2 General ground surface height Z above the datum plane is a function of rectangular coordinates (X,Y).
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simpler representation, the road shape then becomes a single path line, essentially a function of one
variable rather than two, defined by values as a function of distance along the road, the path length from a
reference point.

The actual path of the vehicle centre of mass, or other reference point, projected down into the road
surface, gives a specific line. The path is like a bent wire in space, with curvature at any position on its
length. In the context of racing, this should be the ideal lap line forming a closed loop, but compromised in
reality by driver and vehicle imperfection and inconsistency, and by the requirement to avoid other
vehicles.

2.2 The Road

In plan view, the route from A to B is simplistically defined by a line, Figure 2.2.1, specified by a definite
relationship between X and Y. In general, the functions X(Y) and Y(X) are not single-valued. Measuring the
vehicle’s position by the distance travelled from the point A (i.e. the path length from A), then there is a
parametric representation of the route position, X(s) and Y(s). For a given path length s (i.e. position along
the road), various values may be deduced from the general surface shape, inter alia those in Table 2.2.1.

Strictly, the path length includes vertical positional variations, so the path length seen in the horizontal
(X,Y) plane is really

B
SH = J cos Ords
A

where 6y is the road longitudinal gradient angle.

The longitudinal slope gives a longitudinal weight force component affecting the tractive force required
for steady speed. The banking slope similarly introduces a lateral component of the weight force. The
longitudinal normal curvature, combined with the speed, gives vertical accelerations which cause
variations of the tyre normal forces. The longitudinal lateral curvature creates the cornering force
requirement. The banking curvature affects tyre camber angles. The road camber twist (spatial rate of
change of bank angle) affects the tyre normal forces (diagonal distribution of normal force). The rate of
change of lateral curvature is the path turn-in, discussed later.

Y

—

X

Figure 2.2.1 Route A to B specified by a line in coordinates (X,Y).
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Table2.2.1 The basic geometrical properties of a road, at a path point s

(1) the X coordinate

(2) the Y coordinate

(3) the road height (altitude) Zg

(4) the usable width

(5) the longitudinal slope, angle x

(6) the banking (lateral) slope, angle ¢x

(7) the longitudinal normal curvature, kn

(8) the longitudinal lateral curvature, k.

(9) the banking (camber) curvature, kg
(10) the road camber twist
(11) rate of change of lateral curvature
(12) etc.

The basic geometric properties in Table 2.2.1 require careful definition because the values obtained
depend in general on the resolution of the data, or of the wavelength filtering applied, which must be
chosen to suit the application. As an example, a pot-hole in a road may have an extreme slope at an edge,
but this would not generally be interpreted as a road slope in the general sense, but as a local disturbance.

In principle, the geometric shape of the road is continuous with wavelength, and if subject to Fourier
analysis may be represented in a form of spectral analysis, with no special significance for any particular
wavelengths. This is correct geometrically, but not true dynamically. The vehicle itself has a definite size,
as do the wheels and tyres, and the vehicle on its suspension has natural frequencies, and a speed of travel,
from which it is apparent that certain wavelengths may be significant. In particular, there is a dividing
frequency, not extremely well defined, which is some fraction of the natural heave frequency of the
vehicle. This dividing frequency separates road shapes which are dynamic in effect from those which are
essentially static in effect. In other words, in general, driving over a hill is not the same as driving over a
bump. For a passenger car, the basic natural frequency of the vehicle in heave, the basic ride frequency, is
typically about 1.4 Hz (8.8rad/s). At a forward velocity of 20m/s, this corresponds to a resonant
wavelength of 14 m. For frequencies less than about 0.2 times the natural ride frequency there is no
significant dynamic effect, so wavelengths greater than about 5 X 14m=70m do not stimulate any
dynamic response. Therefore they can be separated out and dealt with by different methods. A hump with a
wavelength of 100 m is a small hill, not a ride or handling issue.

From this consideration, then, the geometric properties of the road are, in practice, separated out by
wavelength into static and dynamic factors, although this is not inherent in the basic geometric
specification of the road.

The altitude graph Z(s) is the longitudinal profile of the road as a function of distance along the road,
Figure 2.2.2. This may be derived conceptually from Figures 2.1.2 and 2.2.1. Of course, in many cases this
would actually be obtained directly, for example by driving the route with instrumentation (a logger, GPS,
etc.), rather than by actual calculation from the general topological form Zz(X,Y).

The local road angles are defined as follows, as seen in Figure 2.2.3. For a given point on the path, there
is a plane tangential to the road surface at that point, generally not horizontal. The path lies locally in that
plane; draw the normal and tangent of the path which lie in that plane. Consider the longitudinal vertical
plane containing the tangent line. This is also simply the vertical plane tangent to the path at the point of
analysis. In this longitudinal vertical plane, the tangent line is at angle 6y to the horizontal. This is the road
pitch angle (gradient angle) 6r considered positive for an upward (climbing) gradient. The longitudinal
road gradient is actually

dZg

G:SineR:d—
S
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S

Figure 2.2.2 The road profile Zg(s) shows the path height as a function of path position.

Now consider the line normal to the path, in the road tangent plane. By rotating this normal line about an
axis along the path tangent line, the former may be brought to a horizontal position, that is, into the
horizontal plane. The angular displacement required to achieve this is the road bank angle. Note that the
bank angle is strictly measured in a plane perpendicular to the tangent line, not in a vertical plane.
Expressed in another way, the road bank rotation is about the tangent line axis, in general not about a
horizontal line.

This relates to the positional Euler angles of a vehicle body, which use yawing, pitching and rolling
angular displacements in that sequence about the vehicle-fixed (x,y,z) axes.

In practice, for cars, the path longitudinal slope is fairly small. One-in-seven is a considerable slope by
normal road standards (8.2°), and one-in-five is extreme (11.5°), so the road bank angle can normally be
approximately measured in the vertical plane. However, the equations of road geometry are strictly correct
for the formal definition of the bank angle, not the approximation in the vertical plane. This is one of the
problems of combined gradient and banking. Considering verticals dropped from the path to a true

Vertical

Datum plane

Figure 2.2.3 Road angle geometry. The plane is that of the road surface at the point, containing the path line at the
point.
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horizontal plane, at the datum level, the result can be seen to be that the path elevation Zg may be plotted
against path position, giving Zg (sg). The path slope is normally sufficiently small for this to be a minor
distinction, locally at least (e.g. cos 8° =0.99027). Mathematically, the gradient is

dZx
G=—-2
ds

whereas numerically the mean gradient between two data points is

_ZRr = LRy

Sy — 8r—1

G,

It may be that the above expression gives G,_;. The gradient belongs to the space between the two points,
but may be attributed to one or other point. This is just a matter of definition.

2.3 Road Curvatures

Any path curvature,  (lower case Greek kappa, units m ') is the reciprocal of the local radius of curvature,
R (m). (Use of the Greek alphabet is described in Appendix C.)
For a flat horizontal road with path radius R there is therefore simply a lateral curvature

1
KL:§

For a ‘straight’ road, in the sense of no corners or banking, but with undulations of road elevation, the
road gradient is

_ 4%
T ods

and the vertical curvature is defined as

_dG &%
T ds ds?

Kv

with corresponding numerical definitions. In this case, with no road bank angle, and small G, the vertical
curvature is the same as the normal curvature.

In the general case, the vehicle path line has lateral (cornering) curvature on a banked road which also
has longitudinal gradient. It is then necessary to consider five curvatures and two angles (see Figure 2.3.1
and Table 2.3.1).

Table 2.3.1 Path curvatures and angles, Figure 2.3.1

(1) k, the total path curvature

(2) kN, the normal curvature

(3) k., the lateral curvature

(4) kv, the vertical curvature

(5) kg, the horizontal curvature

(6) ¢, the road bank angle

(7) ¢, the curvature vector angle from horizontal.
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>

Figure 2.3.1 Path curvature seen in rear view.

From Figure 2.3.1, the total curvature k can be resolved into perpendicular components. There are two
principal ways to do this. In the Earth-fixed datum coordinates, the horizontal and vertical components are

Ky = KCOS ¢,
Ky = Ksin ¢,

In the road-surface-aligned coordinates, the lateral and normal components are

KL, = k08 (¢, + ¢r)
KN = K Sin (d)K + (rbR)

The horizontal curvature ky is the curvature appearing in a road map (i.e. in plan view) with the
particular path drawn in.

The vertical curvature kv is the curvature derived from the path elevation graph Zg(s).

The normal curvature ky, the curvature normal to the track surface, is the one which affects the
symmetrical suspension deflections and the tyre vertical forces.

The lateral curvature k , parallel to the local road surface, is the curvature requiring lateral tyre forces
for the car to follow the road, and causing the vehicle roll angles.

In view of the above, dynamic analysis is most conveniently performed in coordinates aligned with the
banked track surface, and with the (kn, kL) curvature pair, that is, with the normal and lateral curvatures.

For simulation purposes, it is necessary to know the road bank angle ¢, and the curvature vector (i.e. k
and ¢, or other combination of data allowing k and ¢, to be evaluated). Methods of determining this
information are considered later.

The dynamic behaviour of the vehicle is normally analysed in road surface-aligned coordinates. These
are distinct from the Frenet—Serret coordinates generally used by mathematicians to analyse a curved line
in space (see Appendix E).

2.4 Pitch Gradient and Curvature

Consider a track with no bank angle, but with longitudinal gradient angle 0, as in Figure 2.4.1. The angle
is considered constant, that is, the pitch curvature is temporarily zero.

Analysis proceeds in road-aligned coordinates. The weight force W needs to be replaced by its
components in those coordinates, as shown. The consequence of the normal component change is a
reduction in the tyre vertical forces, although this is usually fairly small. The longitudinal component
exerts an effective resistance on the vehicle for positive 6 and, because it acts at the centre of mass, above
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Figure 2.4.1 Vehicle on longitudinal gradient.

ground level, in combination with the required opposing tractive force it gives a force couple in pitch and a
resulting longitudinal load transfer.

Figure 2.4.2 shows a vehicle in a trough of pitch radius Ry (and positive pitch curvature ky), which, with
zero road bank angle, is

Ky = KN
The normal curvature is
1
KN — —
Rn

The vehicle is shown in a position at which the road normal is vertical, in order to temporarily separate out
the pitch curvature and pitch angle effects. The bank angle is still zero. A trough is considered to have
positive curvature, whereas a crest has negative curvature. Also shown, incidentally, is the angle 6;

Figure 2.4.2 Road pitch curvature.
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subtended by the wheelbase. Considering an effective steady state, to follow the path curvature the vehicle
must have a normal acceleration

AN = KNV2

For a full simulation, with varying ky, the vehicle ride position on the suspension must be time-stepped,
and, allowing for suspension deflections, the vehicle centre of mass will not have exactly the same normal
path curvature as the road. However, consider a suspension which reaches equilibrium quickly, in a well-
damped manner, with displacement small relative to the radius, so that the vehicle centre of mass has the
same path normal curvature as the known track normal curvature, at least for longer wavelengths (low
frequencies). Then, for analysis in vehicle-fixed coordinates to determine the axle and tyre vertical forces,
it is necessary to add a normal pseudo-force at G:

FKN = —MKN V2

In a trough, which has positive curvature, this pseudo-force acts along the downward normal, increasing
the ‘apparent weight’ and therefore increasing the tyre vertical forces.

To study the suspension response, this correction force can be applied separately to sprung and
unsprung masses. For this, really a time-stepped Earth-fixed coordinate analysis should then be used, for
clarity, so that pseudo-forces are not needed.

With pitch curvature, the road normal direction at the two axles is different, by the wheelbase normal-
curvature angle

W
O n = X = knL
LN RN KNLw

This has a small effect on the tyre-road normal force magnitude and direction, but is probably better
neglected as of little importance for normal roads. It may be significant when the pitch curvature is large,
arising for off-road applications.

2.5 Road Bank Angle

Figure 2.5.1 shows a rear view of a vehicle on a straight road with a road bank angle ¢y, but without any
longitudinal gradient or cornering, and having zero lateral acceleration.

Figure 2.5.1 Vehicle on a straight banked road.
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Figure 2.5.2 Road camber curvature (bank curvature).

To see the effects, analysis is performed in road-aligned coordinates, so the weight force is resolved into
components normal to the road and tangential, down the slope. The result of the reduction of normal
component is a reduction of tyre normal forces. The result of the lateral component is a lateral load
transfer. There is also some resulting body and axle roll, and the front-to-rear distribution of the lateral load
transfer should be considered. Lateral tyre forces are needed to maintain height on the bank. The complete
analysis is therefore similar to cornering with lateral acceleration g sin ¢g, but the tyre lateral forces do not
produce an actual acceleration, they act up the slope to oppose the weight force component.

In general, the vehicle will be cornering when on the banking, and the banking itself will have some
horizontal component of curvature; these must be distinguished. It is possible in principle for a vehicle to
corner on a straight-banked road, and possible, but very unlikely in practice, for the vehicle to travel
straight (zero horizontal curvature of the path) on a road with a curved bank, by changing its height.

At the position of the vehicle, the road has certain properties, in the present context the local bank angle
(zero gradient assumed at present). The driver’s control inputs will give the vehicle some cornering
curvature in the plane of the road, through control of the tyre lateral forces. The relationship between the
various curvature values was considered earlier, Figure 2.3.1.

As zero gradient is currently assumed, the vehicle is in a special case of cornering at constant elevation
on the banking. For a constant bank angle, zero cornering force is required for a horizontal road curvature
given by

KH V2

= tan ¢y

High-speed test tracks are designed to allow this condition to be obtained at various speeds by using a track
with bank curvature making various ¢ values available. This is done to minimise the tyre drag to allow
maximum sustained speed. Despite the elimination of cornering drag in this way, there is still a
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considerable increase of tyre vertical forces, and hence of tyre rolling resistance and tyre power
dissipation, so the tyre temperatures are still increased.

If the vehicle on the banking is not in this special condition of balanced constant-height cornering then
there will in general be a change of longitudinal road pitch angle (fg) and additional longitudinal curvature
(i.e. ky) and a more general analysis is required.

The road bank curvature (road camber curvature) kg implies that the road bank angle ¢y varies with
lateral position, where

_ ¢

KB = do

in which o (sigma) is the lateral position on the road from the centreline (analogous to longitudinal path
position s). Actual differences of ¢y arise only once a non-zero width of road is considered. Bank
curvature may be considered relevant for some forms of corner analysis where the actual path is not
predetermined but remains to be optimised. It also results in different directions for the road normals at the
two wheels of an axle, having an effect on tyre camber forces. The actual angle difference between the
normals is kg7, where T is the axle track width (tread).

2.6 Combined Gradient and Banking

Considering the foregoing special case analyses, it is apparent that the vehicle will in general be on a
curved-banked road, and that it is necessary to account at least for the simultaneous effects of

(1) road pitch angle,
(2) road pitch curvature,
(3) road bank angle.

The most satisfactory approach, and one in accord with the definition of angles in Section 2.2, is to
consider the longitudinal road profile first. Hence the weight force is resolved into Fyx = W sin 6y to the
rear, and W cos fr normally. Because of the road bank angle, the W cosfr component is further resolved into

Fwy = W cos 6 sin ¢y
acting laterally parallel to the banked road surface, and
Fwz = W cos 6g cos ¢y

acting normal to the local road surface.

The longitudinal profile curvature is no longer the correct curvature for evaluating the normal
(compensation) pseudo-force, rather the normal curvature ky must be used to give kxmV? acting at
G perpendicular to the local road surface.

The particular curvature components required are to be evaluated from Figure 2.3.1, depending upon
the form of the data. If ki and ki are known, along with ¢, then these are used directly. However, if the
actual path elevations are given, then kv will be deduced from these, and if the corner plan shape is
deduced from a map analysis, then this will give k. The road-aligned curvatures will then need to be
calculated for each point.

2.7 Path Analysis

A path position is defined in coordinate geometry by the path length s from an initial point on the path. The
path shape is defined by the parametric three-dimensional form
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X=X(s); Y=Y(s); Z=Z(s)

where (X,Y,Z) are Earth-fixed axes. Much vehicle dynamic analysis is performed in two dimensions,
effectively on a flat plane (X,Y). In these two dimensions (road plan view), it is often convenient to express
the path shape by Y = Y(X), that is, ¥ as a function of X. The path radius of curvature is also dependent on
the path position,

Rp = Rp(S)
and the path curvature itself is
Kp = Kp(S) = — (271)

The path angle v (nu) is defined in Figure 2.7.1. Hence,

. Y
— = Cos V; d—:smv; — =tanv
N

ds dX
v = atan g
- dx

but this must be evaluated into the correct quadrant (Basic Angle(dx,dy), FORTRAN Atan2(dy,dx) functions,
not the common single-argument Atan(dy/dx) functions).
The path curvature and angle are related by

Also

1 dv
Kp = — =

=— 2.7.2
Rp ds ( )

that is, the path curvature is the first spatial derivative of path angle (with the angle expressed in radians, of
course). The rate of change of path curvature with path length is the path turn-in 7p, expressed by

dep _ d (1 d’v
=—=—|(—)=— 2.7.3
=4y " ds <Rp> ds? ( )
Path angle

Ax

Figure 2.7.1 Path angle and path radius.
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Hence the local path parameters include path angle v, path curvature pp and path turn-in tp, with

dv
Kp = —
P s
dkp v (2.7.4)
Tp=—= —
P7ds — dg?

The units are m ™' or rad/m for curvature and m ™2 or rad/m? for turn-in (spatial rate of change of curvature).
In practical applications, caution must be exercised with the sign of path turn-in. In a left turn, curvature is
positive, path angle increasing. Positive path turn-in then corresponds to driver-perceived turn-in.
Negative path turn-in is a release from the turn. However, in a right-hand turn, path curvature is negative,
and positive path turn-in corresponds to release from the corner, with driver-perceived turn-in corre-
sponding to negative d*v/ds”. The driver-perceived turn-in, which is positive when the absolute radius of
curvature is decreasing, is therefore

Tpp = sign(k)tp (2.7.5)

The spatial derivative of path radius is
R_d /1y _ =
ds  ds\kp) &3
drR 2
— = —1pR 2.7.6
Pl (2.7.6)

Also

d (1) dep

In terms of rectangular coordinate geometry, in two dimensions the path curvature is given by the standard
expression

B dzy/d)c2
T+ (dy/dx) T

and in terms of first and second time derivatives as

X§ — Xy
(432

- 5
3,3

Kp =

Xy — &9
V3

2.8 Particle-Vehicle Analysis

Consider a vehicle of no spatial extent (i.e. a particle) at a point on the path at (X,Y). Coincident
with the vehicle at this instant is the origin of another set of Earth-fixed axes, here denoted (x,y). These
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vehicle-coincident path-aligned axes have the longitudinal axis x tangential to the path, the y axis
transverse, along the local path radius. The vehicle passes at this instant through the origin of these axes,
which are stationary, with speed V and absolute longitudinal acceleration A,. These axes may be thought of
as local path axes. In the more general case of a non-particulate vehicle, which has yaw, roll and pitch
angles relative to the path, vehicle-fixed coordinates must be distinguished from local path-fixed
coordinates, and both of these from datum Earth-fixed coordinates.

In two dimensions, the speed is V at path angle v, with the velocity vector V having components

Vx =Vcosv
Vy = Vsinv

The speed is

_ds

=5 (2.8.1)

Vv

In path-aligned coordinates (i.e. tangential x and normal y):

Vi=V
V, =0

The longitudinal (tangential) acceleration A, is determined essentially independently of the path by the
engine and brakes, etc. The lateral acceleration depends on the path curvature:

V2
Ay = KkpV? = — (2.8.2)
Rp
This is the standard result for circular motion, but remains applicable when the radius of curvature is
varying.
The accelerations in the original Earth-fixed coordinates are
Ax = Ay cosv—Aysinv
Ay = Ay sinv+Ay cos v

The rate of change of lateral acceleration, the lateral jerk (m/s®), is

d
Jy = E(Ay)
d
= — (kpV?
g V)
d d
_n4 L2
a ) Tree g (V)
dsd dv d
2 2
=Vi—— ——(V
aras P Her g gy (V)
SO
Jy = V7 + 2kpVAx (2.8.3)
The longitudinal jerk is simply
dAy
Jy=— (2.8.4)



Road Geometry 57

2.9 Two-Axle-Vehicle Analysis

Consider now a vehicle with extent in length, having two axles — that is, a wheelbase L and a vehicle yaw
position. The vehicle heading angle is ¢ in absolute coordinates (X,Y), as shown in Figure 2.9.1. The path
angle is v, and the difference is the attitude angle . The attitude angle is the angle of the vehicle
longitudinal axis relative to the direction of motion, measured at the centre of mass, to be distinguished
carefully from the heading angle. In general, the sign convention adopted is

y=v—p

However, consider here the tyres to have zero slip angle, no roll steer etc., so that the vehicle moves fixed
rigidly (for lateral motion) to the tangent of the single track path, with zero yaw angle. This is an
approximation to having the centre of each axle follow the path. In this model the vehicle behaves rather
like a simplified train on a track, with a rigid lateral constraint at each end. However, the wheelbase is still
considered to be small relative to the path radius. The vehicle has zero attitude angle 3 (sideslip angle), so
in this special case the heading angle equals the path angle:

yp=v—B=v (2.9.1)

that is, the vehicle remains simply tangential to the path. Hence also
b=y
=

where time variations of path angle refer of course to the point at the moving position of the vehicle, taken
at the centre of the wheelbase or the centre of mass.
More specifically, the vehicle yaw angular velocity (rad/s) is in this case

(29.2)

xj-f—{)—dv*dv ds
0 dr ds de

= rpV (2.9.3)

(V tangential )

P s H  positive acw
B , 5 positive cw

r=H=-V/R

ISO

Y

Figure 2.9.1 Path, heading and attitude angles.
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The vehicle angular acceleration (rad/s®) — again for 8 =0, zero attitude angle — is

i=
)
dy
= E = & (KPV)
_ dv + Vde
T
de ds
= kpAy+V Rt
kpAxt ds dt
giving

¥ = kpAy+1pV?

(294
= VA +V'V? )
where a prime indicates differentiation with respect to path length. So, for a vehicle without yaw freedom

relative to the track (i.e. 8=0),

=V = kpAx + 1pV? (2.9.5)

Hence the yaw angular acceleration required arises from two terms. The first term, kpAy, is the result of
a given path curvature with a changing speed. The second term, tpV?, arises from the change of path
curvature (the path turn-in) with existing speed. In particular, the time rate of change of the vehicle-
position path curvature is

de dKP ds
. — V 2.9.
dt ds dt R ( ? 6)

Note, however, that for a fixed point dkp/dz =0, the path itself is fixed in Earth-fixed coordinates.
Possibly also useful, the spatial rate of change of path radius is

dR d (1

ds  ds K_P

_dee d 1
- ds de Kp
Hence
dR Tp o)
S _ X2 — _IuR 2.9.7
ds K}Z) s ( )
Also
dR dRds
=TS LRV (2.9.8)

dr dsdr
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and

d (1 _dep o R
d\R) —dat " T R

d 1\ dep
ds \R _ds_TP

Associated with the path turn-in 7p (units m72),

o= 3P
P ds

we may define a car turn-in 7 for a given velocity V:

dkp

dr

dkp ds
ds dr
= 1pV

This has units m ™!

elsewhere as a subscript for vertical.

2.10 Road Cross-Sectional Shape

(2.9.9)

(2.9.10)

(2.9.11)

s~'. The subscript C for car rather than V for vehicle is used because V is used

Figure 2.10.1 shows the general case where the effective road bank angle is ¢r, measured between the tyre
contact points. Note that for a road with non-straight (curved or piecewise linear) cross-section, the road
bank angle must be defined by the line joining the centres of the contact patches. Because the road cross-
section is not straight, the road angles measured from the ¢y position —the road camber angles, at the tyres,
left and right — are Yg; and Ygrg, defined positive as illustrated. These angles give corresponding changes of

the tyre camber angles, influencing the tyre camber forces.
The road bank angles at the tyre positions are then

drL = dr — YR
Prr = Pr + Yrr

¢
J/
Z

RL

Road mean
gr  bank line

Datum level

Figure 2.10.1 Road bank and camber geometry (track cross-sectional shape).
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R Sensor reference
line

Road mean
bank line

Figure 2.10.2 Use of four ride-height sensors for logger evaluation of road camber angles (rear view).

To analyse this in a simulation, the data set for the road needs, in principle, four extra data items for each
point of the path, these being the road camber angles, one for each of the four tyres. It would normally be
acceptable to use only two road camber angles on the basis that the front and rear tracks are nearly the
same.

The road camber angles, as defined in Figure 2.10.1, cannot be deduced directly from normal logger
data, but are easily obtained with a special set-up. The equipment required is a set of four body ride-height
meters, for example lasers, placed along a transverse line (perpendicular to the centreline), as in
Figure 2.10.2. For best results, the spacing of the tyre-area sectional mid-points should equal the track
(tread). This is assumed in the following analysis, but is not absolutely essential.

The spacing width between sensors across the tyre area is w. The road bank angle ¢r is not known, and
cannot be deduced here, but is not required. The four measured ride-height values are zy, . . ., z4. The values
at the centre of the left and right tyres (at track spacing) are therefore

The sensor reference line is rolled from the road mean bank line by

. (ZL—ZR
arcsin
T

d)Sen

21+22*23*Z4)

arcsm( T

Relative to the sensor reference line, the two road angles are

" . <Zz—21)
= arcsin| ———
RL W

n . (Zz — Z4 )
= arcsin
RR w
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The actual road camber angles are therefore

YrL = @rL t Psen
YRR = PRR — Psen

Explicitly,

. (22— 21 . (2L —ZR
YRrr, = arcsin + arcsin
w

. (23— Z4 . (ZL—ZIR
Yrr = arcsin — arcsin
w

2.11 Road Torsion

The road bank angle varies with longitudinal path position s, and hence the bank angles are different at the
two axles, according to the local road torsion kggrs (rad/m), defined as

o

k. =
RS ds

The difference of road bank angles between the two axles depends on the road torsion. Considering the
road torsion to changes only slowly along the road, approximately

bt — P = k¢RsLW

where Lyy is the wheelbase, and the road torsion is taken at the centre of the vehicle.

For vehicles with stiff suspensions (e.g. Formula 1 or equivalent) this may have a significant effect on
vehicle behaviour at some points of some circuits. In a few special cases, severe road torsion occurs, for
example, when moving onto or off the apron on a banked oval track, or over chicane edges in Formula 1.
Considering that, in Formula 1 for example, the maximum roll angle is about 1 degree, then a road torsion
of 0.1 degree or more over the wheelbase length could be expected to have significant effect. This is a road
torsion of less than 0.05 deg/m (0.9 mrad/m). Obviously, racing tracks frequently exceed this level of
torsion, even in the absence of the special cases mentioned.

Oft-road and agricultural vehicles may, of course, be subject to large track torsion angles. For passenger
cars on normal roads the effect is small because the suspension is more compliant.

2.12 Logger Data Analysis

When a vehicle path is to be specified, the path data requirement may arise in two ways. The first is the
invented path, for a specific test, for example a slalom test or a lane change, when the path or road, with
width, can be specified geometrically ab initio. The second case is when an existing road is to be specified
geometrically. A detailed survey may be made, particularly for test tracks. However, this may be
impractical, or uneconomical, and it may be desired to obtain the path geometry by direct means, by
driving a vehicle over the road and in some way recording the path shape. Naturally, this often arises in
racing, when data loggers are in common use, and the track shape is required for use in simulations for
subsequent vehicle optimisation, of handling set-up, gear ratios, etc.

For each point of the path it is desired to evaluate, inter alia, the parameters in Table 2.12.1. In actual
cases, some more detail may be appropriate, but these are the basic geometrical factors.
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Table2.12.1 Primary path parameters for evaluation

(1)0g, the road pitch angle

(2) ¢y, the road bank angle

(3) kL, the path lateral curvature
(4) Ky, the path normal curvature.

Figure 2.12.1 shows the logger-carrying vehicle in rear view. Accelerometers on the body will give Agy
and Ag,. These must be corrected for the body roll angle to give the road-aligned accelerations. In the case
of a vehicle with a rigid axle, in principle the accelerometers could be fixed to the axle, reducing the roll
angle corrections, although the general vibration environment is worse. The analysis here assumes body-
fixed accelerometers.

On a level road, for given known vertical and horizontal accelerations Ay and Ay, the observed
(accelerometer indicated) body-coordinate accelerations are given by

Ap, = Ay cos ¢pg — Ay sin g
Apy = Ay sin ¢ + Ay cos ¢y

These two simultaneous equations may be solved in the usual way to give the body-aligned accelerations,
eliminating Ay and Ay in turn. The result is

Ay = Agy cos ¢pg — Ap, sin ¢p
Ay = Agy sin ¢g + Ap, cos ¢y

The accelerometers readings will include the effect of gravity acting to negative V, so the actual vertical
acceleration is Ay — g

The speed must also be known. The curvatures are then given simply by k = A/V?2. The accuracy of this
depends on the quality of the value for the body roll angle ¢, which is the sum of the suspension and axle
roll angles:

bp = ds+ da

L AL Z

Figure 2.12.1 Accelerometer-carrying vehicle in rolled position.
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The suspension roll at each axle can be deduced accurately from the individual suspension bump
deflections. For a body that is not ideally torsionally rigid, interpolation of intermediate effective
suspension roll angles requires knowledge of the longitudinal distribution of torsional compliance.
It is probably better to locate the accelerometers over an axle.

The axle roll angle is due to the tyre normal deflections. For a passenger car, the axle roll is smaller than
the suspension roll by a factor of 10 or so, but for a racing car they may be almost equal in value, but
fortunately, then, small. Tyre normal deflections can be calculated accurately only with some difficulty
because the normal stiffness is increased by speed (centrifugal carcase stiffening and peripheral
momentum impact force) and reduced by tyre lateral forces. Where possible, it may be better to measure
body roll directly by lasers, or to use both methods.

If the road itself has a bank angle, this cannot be detected by the vehicle. The direction of gravity in the
vehicle-fixed axes is changed, altering the equations. Hence some independent means is necessary to
obtain the road angles. Some possibilities include:

(1) gyros on the car giving angular velocities, integrated to angles;

(2) inclinometers placed on the road;

(3) inclinometers in a car driven very slowly along the road (corrected for body roll and pitch
angles).

In principle it may be possible to obtain the road pitch angle from analysis of the car with additional
other instrumentation. For example, from the driveshaft torques and knowledge of the aerodynamics and
tyre drag, the longitudinal acceleration expected may be deduced and compared with that derived by
considering the wheel angular speeds. Any discrepancy is then due to a component of the weight force in
the longitudinal direction (i.e. a road pitch angle). However, it is doubtful that this would form the basis of
a practical method because of inaccuracies.

In analysing data to obtain the normal curvature, similar problems will arise as in derivation of the
cornering curvature — that is, the double differentiation amplifies any noise in the base data, and careful
filtering of the data may be required.

The use of gyro sensors to provide angular velocity data, which may be integrated to give angular
position (with various transformations of axes), appears to be an ideal solution. However, very high-
quality gyro data are needed for this purpose, to minimise drift which gives a cumulative angular position
error.

Lack of correct zeroing of the accelerometers will, after integration, give a cumulative lateral velocity,
equivalent to a false road curvature kg = Ayo/ V2. The presence of lateral road slope without correction
gives a similar effect. The accumulation of these is significant. This becomes apparent when the logger
data are used to reconstruct the shape of a racing track when it is found that the two end positions and
angles may be far from agreement. It is possible to deduce an accelerometer zero correction to minimise
the end discrepancy. Fortunately, when the logger-data reconstructed circuit is used for subsequent vehicle
optimisation in a simulation, there is no need for the track to join up correctly in position and angle, so this
is mainly an aesthetic problem for the resulting track shape display.
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Road Profiles

3.1 Introduction

Any particular track along a road has a longitudinal profile, expressed as a function of the whole path
length Z(s), or as a function of the plan-view (horizontal) path length Z(sy), representing its vertical
sectional shape for the purpose of ride quality analysis. This neglects lateral curvature (cornering). For
advanced analysis, two parallel tracks may be considered, for left and right wheels, or even four road tracks
if the vehicle axle tracks (US treads) are different. In physical testing and simulations, the type of road may
classified mainly as

(1) isolated bump,

(2) sinusoidal,

(3) fixed waveform,

(4) stochastic, independent of speed.

An isolated bump is a local disturbance on a nominally smooth basic road, in effect a solitary wave.
These are modelled as idealised theoretical bumps with simple geometrical properties. Such ‘bumps’ may
be further classified as ramps or true bumps. A ramp is a disturbance which results in a residual change of
height. A non-ramp bump returns to its original elevation. Such solitary bumps are quite easily arranged
experimentally, whereas sinusoidal roads are difficult to make physically, although easy analytically or
numerically, and stochastic roads are also hard to generate to a given specification in reality, although
again easy enough in theory. Idealised bumps are therefore useful tests, and also have the merit of being
close to practical problems, for example the common depressed drainage grid at the side of a road and the
‘sleeping policeman’ hump for traffic calming.

3.2 Isolated Ramps

The ramp is a disturbance with a residual change of road height. The main types of ramp, in its broadest
sense, are listed in Table 3.2.1 and Figure 3.2.1.

The simple step has a height specification, but no length dimension. The height may be positive (step up)
or negative (step down). Notionally, it is perfectly sharp at the edges. The nearest equivalent in reality is
driving up onto a kerb, or down off one, with a height of about 100 mm. If this is done at any speed it is a
severe shock to the tyre and suspension, with the tyre suffering a severe initial deflection and local negative
curvature of the tyre tread on the corner of the step, so when tested in reality the step height is fairly limited.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd



66 Suspension Geometry and Computation

Table 3.2.1 Isolated ramps

(1) Simple step, zero length, height up or down.
(2) True linear ramp, with length, and height up or down.
(3) Haversine ramp, with length, and height up or down.

The maximum positive deflection from static allowed by a passenger car tyre is about 50 mm, compared
with a static deflection of about 14 mm, i.e. a total deflection of about 64 mm, varying with the section
aspect ratio. When the 64 mm positive deflection is reached, a rim impact occurs, with two layers of tyre
pinched against the rim.

The true linear ramp is a softened version of the step, being specified by the height H and length L, where
Lis the plan-view length rather than the true path length. It has the merit that it can be produced physically
fairly easily, and is a realistic representation of a problem occurring in reality, such as temporary road
works or poor quality resurfacing edges. The gradient of the ramp is simply

“=7

The ramp angle is 6 = atan(H/L). The gradient is discontinuous at the ends of the ramp. Realistic test
values would be a height change of 50 mm over a length of 1 m, which is an angle of 2.86°. At practical
vehicle speeds the rise time of the ramp is short (e.g. 50 ms), so realistic ramp lengths are almost as bad for
maximum tyre deflection as a step, although the local tyre distortion at the ramp corners is much reduced.

The haversine ramp is a more smoothed version, lacking the gradient discontinuities of the linear ramp.
The haversine function is so named because it is one half of the versine, which in turn is the complement of
the cosine, so the haversine function is defined as

hav(6) = ;{1 —cos(6)}

It has a sinusoidal form, varying from O to 1, being 0 at 6§ =2Nn and 1 at § =2(N — 1)z, as shown in
Figure 3.2.2.

(a) Simple step? Z

. 7% T
X 7

(b) Linear ramp

Figure 3.2.1 Isolated ramps up and down: (a) simple step; (b) true linear ramp; (c) haversine ramp.
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Figure 3.2.2 Haversine and cosine curves compared.

The haversine ramp, which is half a wavelength long (i.e. 1 =2L), may therefore be expressed as

X X
Z=Hhav(Z2) = H[1-cos(Z2)); 0<x<L
L) > L

The gradient of the haversine ramp is given by the derivative of Z,
nH . (71X nH

G=—sin|— ) <—

2L L 2L

with a maximum value of 7H/2L. This maximum gradient is therefore more severe than the corresponding
linear ramp by a factor n/2.

3.3 Isolated Bumps

The main types of model isolated bump are listed in Table 3.3.1 and Figure 3.3.1. In all cases, the height
may be negative, giving a trough rather than a bump. In some cases this is arealistic problem — for example,
the trapezoidal trough (or negative trapezoidal bump) is a good representation of the common badly-
levelled gutter drainage grid.

The simple step bump is rectangular. The triangular bump is two ramps back-to-back. The trapezoidal
bump is just a flattened triangle. The sine half-wave bump is defined by

Z=Hsin(nX/L); 0<X<L

Table 3.3.1 Isolated bumps

(1) Simple step, various lengths, height up or down.

(2) Triangular, with length and height.

(3) Trapezoidal, with total length, plateau length, and height.
(4) Sine half-wave, with length and height.

(5) Haversine bump, with length, and height.
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(a) Rectangular Z

H 7] x
7,

Zt Triangular

(c) Trapezoidal

Z
H%//T%x
A

A (d) Sine half-wave

(e) Haversine

Figure 3.3.1 Isolated bumps and troughs up and down: (a) simple step; (b) triangular; (c) trapezoidal; (d) sine half-
wave; (e) haversine.

The gradient, by differentiation, is

nH nX
G=(— —
(%)=(%)
and is discontinuous at the ends. This is a typical shape used for a deliberately made traffic-slowing bump,

the ‘sleeping policeman’, with length from 1 m to 3 m.
The full haversine bump is defined by

Z:Hhav(znTX); 0<X<L

The gradient is

o~ (2ol
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and is continuous, with a maximum value equal to that of the sine half-wave. (The sine wave actually has
twice the amplitude, but only one half is used.)

3.4 Sinusoidal Single Paths

In simple analytical ride studies the path or road is considered to have only one spatial frequency of
bumps at a time. This is known as a sinusoidal single-path road, Figure 3.4.1. All frequencies may be
considered, but only one at a time. It is also known in simulation studies as a single-track road, but this is
potentially confusing because in general motoring a single-track road is one with the operating width of
a single vehicle.

Considering a sinusoidal road shape of wavelength A, Figure 3.4.2, the spatial frequency of the road
nsr (cycles per metre, ¢/m) is

1
nsg = — (3.4.1)
IR

The radian spatial frequency of the road, wsg (rad/m), is

2
WSR = 27'[}’!51{ = —TC (342)
AR
At a vehicle longitudinal speed V, the observed frequency of road vibration stimulus is fg (Hz) with
corresponding radian frequency wg (rad/s) and period T (in seconds):

2
Tp = 7“ (3.4.3)

1 v
Jo= g = 7o = Vs (3.4.4)
WR = VwSR (345)

Figure 3.4.1 Sinusoidal single paths of lower and higher spatial frequencies.
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z Z:Hsin(z—/{FKJrQéJ
R

Z

Figure 3.4.2 Sinusoidal wavelength and phase angle.

It is therefore easy to find the vehicle speed or road wavelength which will stimulate vehicle resonance at a
natural frequency fy:

V= Ifx (3.4.6)

A heave or pitch resonance at 1.4 Hz occurs for a wavelength of 10 m at a speed of 10 x 1.4 =14 m/s.
At a typical speed of 20 m/s and fy = 1.4 Hz the resonant wavelength is 14 m. A wheel hop resonance
at 10 Hz will be stimulated at a speed of 20 m/s by a wavelength of 20/10 =2.0 m. At a wavelength of
0.1 m, as found with cobblestones, wheel hop is stimulated at a speed of around 1 m/s. A wavelength
of about 0.160 m equals the tyre contact patch length, and stimulates longitudinal vibrations at the
wheel, independent of speed.

In Figure 3.4.2, when a purely sinusoidal road is being considered, the phase angle is normally zero.
However, when the sinusoids are the result of a Fourier analysis, the phase must be considered. In
general, for a given single wavelength Ax and spatial radian frequency wsg there are sine and cosine
components, SO

Z = Ssin(wsrX) + Ccos(wsrX) (3.4.7)

These may be combined into a single sine wave of amplitude Z, with a phase angle ¢:

Z = Zp sin(wsrX + ¢) (3.4.8)
Expanding the sine double angle,
Z = Zy{sin(wsgX)cos ¢ + cos(wsg X)sin¢ } (3.4.9)
By comparison with equation 3.4.7,
S = Zycos¢
C =Zysing

SO
Zo = \/S§*+C?
o
tang = —
ana¢ S
asin Figure 3.4.3. The sine and cosine coefficients may be of either sign, and the phase angle must be found

in the correct quadrant (use Fortran Atan2(C,S) or Basic Angle(S,C). Note that the order of the arguments
differs).
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Figure 3.4.3 Sine component amplitude S, cosine component amplitude C, total amplitude Z, and phase angle ¢.

3.5 Sinusoidal Roads

The sinusoidal road is essentially two sinusoidal paths, at a lateral spacing equal to the track (tread) of the
vehicle. This introduces several complications. The two sinusoidal paths may be symmetrical, anti-
symmetrical or arbitrary, corresponding to relative phase angles of zero, 180° or any value, Figure 3.5.1.
Of course, this assumes that the two paths have sinusoids with the same wavelength, which is usual but not
actually physically essential.

When the two paths are in phase, then a symmetrical vehicle would respond symmetrically. However,
this simple case can be used to investigate the effect of vehicle asymmetries, such as different-length
steering track rods.

The purely antisymmetrical case, with 180 degrees of phase difference, stimulates the vehicle strongly
in roll. Again, this is a useful test of the effect of bump-steer and roll-steer geometry and of the steering
activity required to maintain a straight course.

In general, each path has its own phase angle, ¢; and ¢y left and right, although the physical effect of the
phases on the vehicle depends only on the phase angle difference ¢; — ¢ . Each path may be expressed in
its sine and cosine components:

Z1, = SL sin(wSRX) + CL COS(wSRX)

ZR = SR sin(wSRX) + CR COS(wSRX)

The road (viz. the pair of paths) may be considered as a total symmetrical road part Zs on the centreline plus
an antisymmetrical banking part Zg, half of the path height difference,

Zs = N 2L+ Zp)

2
Zp = (2L — Zx)
and in reverse,
7L =7s + 7Zg
IR =7Zs — 7

The centreline road elevation is therefore

Zs = % (SL +SR) sin(wSRX) + % (CL + CR) COS((L)SRX)
Ss sin(wSRX) + Cs COS(wSRX)
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(a) In phase (symmetrical)

(c) General (any phase)

Figure3.5.1 Sinusoidal two-track roads with various phase relationships: (a) in phase, symmetrical; (b) in antiphase,
antisymmetrical; (c) general.

The banking component is

ZB = %(SL — SR) sin(wSRX) =+ ; (CL — CR)COS((USRX)

= SB sin(wSRX) + CB COS((USRX)
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The amplitudes are therefore related simply by

Ss =5 (SL+ Sr)
Cs =1 (CL+ Cr)
SB :%(SL*SR)

Cg = %(CL_CR)

These may in turn be combined into total amplitudes and phases:

Zs = Zso sin(wSRX+ qbs)
Zg = Zpo sin(a)SRX + ¢B)

Zso = \/@
Zpo = \/Sg + C3
The phase angles are
tan ¢g = Cs/Ss; ¢ = atan2(Cs, Ss)
tan gy = Cp/Sp; g = atan2(Cy, Sp)
The antisymmetrical part may be considered to be due to a road bank angle ¢grp:

27, ~Z
tan dgp = TB = %; —90° < by < 90°

SO

2 .
tan ¢pg = T {Sp sin(wsgX) + Cp cos(wsgX) }

27
= % sin(a)SRX+ qu)

The road bank angle is normally quite small, for passenger cars at least, in which case

¢drp ~ tan dgg

Then the local road torsion is

o = 3%rB _ 2ZB00SR
oRS =~y T

cos(wsrX + ¢p)

The total road torsion angle between the two axles of a vehicle of wheelbase L, with the rear axle at the path
position X, is

Prr = PrE XL — PREX
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which is

27

brr = % {sin(wsr (X + Lw) + ¢p) — sin(wsrX + dp)}

3.6 Fixed Waveform

Some other waveforms are sometimes used in testing. A good example is the regularly-repeating
rectangular bump, as in Figure 3.6.1. This particular profile is characterised by the wavelength /4, and
the rectangular bump length Ly and height Hg. The advantage of this particular path profile is that it is
easily constructed by laying down planks of wood on an otherwise level surface. This profile has been used
to investigate the effect of profile roughness on the maximum cornering ability of cars, Figure 3.6.2, by
driving at near to the limit of cornering ability on a smooth entry section before entering the rough section.
The bumps may also be angled to the expected trajectory of the vehicle to introduce an asymmetrical
stimulus.

77 R 77777

Figure 3.6.1 Path profile with repeating rectangular bump.

Figure 3.6.2 Rectangular-roughness cornering test.



Road Profiles 75

3.7 Fourier Analysis

Fourier analysis was introduced by French mathematician Jean Baptiste Joseph Fourier (1768-1830) in
the context of thermodynamic analysis. (Simultaneously he explicitly introduced the idea that a scientific
equation must have consistent units, launching the field of dimensional analysis.) The basic idea of Fourier
analysis is that any perfectly repetitive waveform can be represented exactly by the sum of many
sinusoidal waves. In Fourier’s day this was all done analytically, and in general an infinite number of
waves are required for an exact representation, with some lesser number giving an approximation. With a
digital representation of a waveform, the resolution is not perfect, and a finite number of sinusoidal waves
is sufficient for the perfect representation of the digital wave as sampled. A lesser number than that may
still be used if desired, provided that the approximation is acceptable.

Appendix F gives more information on the Fourier transform. For efficient digital calculation the fast
Fourier transform (FFT) is used, or specifically the digital Fourier transform (DFT), with a number of
points equal to 2" where M is an integer, for example 1024 = 2'% points equally spaced at typically 1 m or
one quarter of the wheelbase. The DFT then gives 512 frequencies each with one sine coefficient and one
cosine coefficient, for a total of 1024 coefficients (approximately, see Appendix F). This requires, in
principle, the solution of 1024 simultaneous equations for 1024 coefficients, but fortunately these are
decoupled and can be solved independently and therefore efficiently.

Applying the definitive ‘slow’ Fourier transform, the cosine and sine coefficients for frequency number
K are given respectively by

2 & 2nJK
CK:NZY(J)COS< 7;\, ); K=0,1,....N/2
J=1

2 X . [ 2nJK
SK:N;Y(J)sm( v ) K=1,2,...,N/2—-1

where the wavelength of that spatial frequency is L/K, L being the physical length of the sample, not seen in
the above equations. The DFT solves for K =1 to N/2.

The road profile (e.g. the original 1024 road heights) is recovered from the sine and cosine coefficients
for the Jth point by

M1
2nJK 2nJK
Z(J) =1Ao+ § {CKcos( 7;\] )+SKsin( TIIV )} + A cos (n])
k=1

From the above equations, it is apparent that the mean value of the road height can have no effect on the
sine or cosine coefficients because they are always complete waves and contribute nothing to the mean
value. The mean is therefore accounted for separately:

1 N
Zn =) %

K=1

A more difficult problem is that of the trend of the data. In the specific case of a road, there is generally a
gradient from one end of the data set to the other. The important point to appreciate is that a Fourier
transform is a transform of a repeated waveform. If path heights at points 1 to 1024 are specified, then the
heights of points 1025 onwards are, in the transform, the same as those for point 1 onwards. Therefore, to
do a Fourier transform it is implied in the dataset that Zy , x = Z, although this is not explicitly in the data.

Considering a perfectly smooth road, but with a gradient, so that Zy > Z;, the Fourier transform assumes
that Zy | = Z;, and the transform will be that of a sawtooth path with a sharp step down from Zyto Zy ;.
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Figure 3.7.1 Degradienting the raw road data.

Therefore the gradient must be removed. To do this, do not set Zy=Z;. The point Zy, should be
measured to give the gradient explicitly. The degradiented data Z is then derived from the raw data H by

K—-1
Zx = Hx — —— (Hy11 — H1)
N
as in Figure 3.7.1.

Degradienting is part of a broader process of detrending, ideally removing the effects of all wavelengths
greater than the sample. For example, the road actually has significant amplitude content at twice the

/\
—_—

Figure 3.7.2 Tllustration of the accumulation of sine components of successive frequencies, showing the first few
frequencies only.
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sample length, so there will be a consequent curvature in the sample, which will falsely appear as
frequency content in the Fourier analysis — so-called aliasing. This frequency content really is present in
the assumed repeated waveform, but not desired because it is not present in the real road which is not really
an exact repeat of the sample. The Fourier analysis gives the correct frequency content of an infinite repeat
of the sample, rather than of the actual road. Failure to detrend the road data will result in considerable
spurious frequency content, particularly at high frequencies, with bad results.

When a simulated road is reconstructed from a set of sine and cosine coefficients, then the waveform
produced is, naturally, a repeating one outside its basic length.

Anti-aliasing and ‘degradienting’ is really an area for specialists — vehicle dynamicists can mostly just
use the results, such as the ISO standard road spectrum, which encapsulates the characteristics of roads as
revealed by Fourier analysis, as discussed in a later section.

Figure 3.7.2 illustrates how a road profile being constructed by an inverse Fourier transform is
accumulated from successive frequencies.

3.8 Road Wavelengths

The spectral analysis of roads may be used to separate out the wavelengths into various categories
according to their effect, as in Table 3.8.1. At the short wavelengths, affecting tyre friction, the practical
division is into macrostructure and microstructure, as seen in Figure 3.8.1. The range of wavelengths from
10 mm to 100 m, covering undulations and roughness, is the main area of interest for Fourier analysis in
ride quality studies.

Table 3.8.1 Road spectral analysis

Characteristic Wavelength Influence on
Slopes 100m < A Static
Undulations Im<A<100m Dynamic ride
Roughness 10mm<A<lm Dynamic NVH (noise, vibration and harshness)
Macrotexture Imm< /< 10mm Friction and noise
Microtexture 10um < 4 < 1 mm Friction
Material molecular Friction
Macro- Micro-
texture texture

Rough Harsh

Rough  Polished

Smooth Harsh

Smooth  Polished

Figure 3.8.1 Road surface macrostructure and microstructure.

3.9 Stochastic Roads

Real roads, subject to Fourier analysis, are found to have a spectral distribution of roughness declining
rapidly with spatial frequency, Figure 3.9.1 giving two examples. A commonly used road model has
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log (S) -
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Sinm/cycle )
Belgian pave
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main road

-2 -1 0

log (ng) ngincycles/m
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Figure 3.9.1 The spectral analysis of two example roads (spectral density versus spatial frequency).

been that in Figure 3.9.2, with amplitude squared spectral density (so-called power spectral density,

PSD)
ng -w
S = Sref( )
NS ref

with the negative gradient W usually equal to 2.5 or 2.7. More complex models are also used with two
gradients, and various cut-off methods, and sometimes continuous curves.

If the maximum gradient of a sinusoid is constant, then the amplitude is proportional to the wavelength.
Then the amplitude squared (the spectral ‘power’) is proportional to the wavelength squared, and the
negative gradient W would take the value 2. Therefore, for representative roads, with W > 2, the maximum
sinusoidal gradient reduces with frequency.

The ISO road surface model has two linear sections as in Figure 3.9.3, with an average road specified by
a break point or reference point at a spatial frequency of 1 rad/m, which is a wavelength of 27 metres. In

A
log ,(S/S,.;) 6 3
w=27 Sier= 64x 10 m/eycle

I
/ g r =57 cycles/m

l(}g] 0 (nsfns,rcf}

Figure 3.9.2 The basic single gradient spectral model of a representative road surface.
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A
S 6
log (S/S..;) Siec= 64x 107 ni/cycle

W4i/ ng ;= #7 cycles/m
0

w=24

»

0 log] 0 (ng/ng .¢)

Figure 3.9.3 The ISO spectral road model, having two gradients.

cycles/metre this is

1
NS ref = E C/m =0.1592 C/m

At a speed of 20 m/s, this break point at a wavelength of 27 metres corresponds to a frequency of 3.18 Hz,
in between the body natural frequency and the wheel hop frequency. The spectral density of the ISO
standard road at this frequency is

Seet = 64 x 107 m*/c = 64 cm®/c
The line negative gradients are
W1 = 307 W2 =24

The particular metalled main road in Figure 3.9.1 can be seen to have two gradients, which are about —3.0
and —1.5 with a break point at a wavelength of 10 m. Data published by Verschoore et al. (1996) show a
‘perfect asphalt’ road to have a single gradient of —2.2 from 100 m to 0.4 m wavelength. Therefore all
roads are not ISO roads.

Evidently roads vary considerably in quality. It is useful to consider a grading of roads for simulation
purposes. The road model is assumed to have one or two gradients with a reference point at a spatial
frequency of 1/2r c¢/m. The spectral density at this reference point will then be as in Table 3.9.1. The
spectral density is 2% cm®/cycle, where R is the road profile roughness rating. The table covers a range from
a very good (motorway) quality to a very bad minor road and beyond. The ‘average’ rating, R = 6, is the
same as that of the ISO standard road. Road types may actually vary by a factor of up to 8 in the reference
spectral density; for example, motorways of typical rating 3, with 8 cm®/c, may vary from 1 to 64 cm®/c
according to the particular road and maintenance state. However, the table is a useful guide to values.

The spectral ‘power’ density is proportional to the amplitude squared, so to double the amplitude
requires a factor of 4 in the value of S, and an increment of 2 in R. The sequence of ISO letter classes
therefore represents a successive doubling of amplitude.

Displacement can be scaled after making the basic profile shape, so one can make the road shape for
1em®/c or 64cm®/c and adjust for road quality later. If the vehicle model is linear, the response is
proportional to the stimulus, and the transmissibility is unchanged by the roughness grade of the road,
which is important only for a non-linear vehicle model or when considering human vibration tolerance.
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Table 3.9.1 Road spectral density at spatial frequency 1/2n ¢/m

Rating S mean (cm3/c) S range (cm3/c) ISO class ISO description
2 4 <8 A very good
3 8
4 16 8-32 B good
5 32
6 64 32-128 C average
7 128
8 256 128-512 D poor
9 512

10 1024 512-2048 E very poor

11 2048

12 4096 2048-8192 F —

14 16384 8192-32768 G —

16 65536 >32768 H —

With a negative gradient of 2.5 in a spectral model, doubling the speed of travel increases the roughness
amplitude at a given frequency, for example the vehicle heave natural frequency, by a factor of 2% =5.7.
This greatly increases the ride motions, which may become not just uncomfortable but actually hazardous.
The provision of high-quality surfaces for high-speed roads is not just a matter of ride quality and comfort,
but also one of safety.

Given a spectral distribution for a path, the numerical path profile may be built. This is a process of
inverse Fourier transform. It may be done by an inverse FFT, but this is not essential. A ‘slow FT” may be
used because the road generation need only be done once, the road profile then being stored and used many
times. A series of spatial frequencies is chosen, and the spectral distribution condensed down into these
frequencies, producing specific amplitudes for each one. In effect, the spectral distribution is converted
into a histogram, with one column for each spatial frequency. The area under the spectral distribution
within the width of the column, which depends on the adjacent frequencies, gives the column height. The
column height is an integral of the spectral density, so having units m> The square root of this is
the amplitude for that frequency. The wavelengths must all fit exactly into the length of road. The phase
angle for each frequency is chosen at random in the range 0 to 27, this giving amplitudes for the sine and
cosine components.

It is possible to study the response of the vehicle to a stochastic road with energy density uniform over
the spectrum. This is known more generally as ‘white noise’. If the energy density is biased towards low
frequencies, then it is known as ‘pink noise’, by analogy with the visible spectrum of light which has red
light at the long-wavelength end. Actual ISO roads are therefore particular cases of pink noise.

In more advanced ride models, using a vehicle model with two wheels on each axle at the track (tread)
lateral spacing, the correlation of the road profile at adjacent positions in the two wheel tracks is of interest.
This obviously depends on the method of road manufacture and on the types of machine used for finishing,
and there could easily be very high coherence at some short wavelengths. However, Figure 3.9.4 shows the
coherence found in one study, track value not specified but presumably that of a typical road vehicle. As
would be expected, the coherence is unity at long wavelengths, falling to zero at short ones. At a vehicle
speed of 20 m/s the resonant wavelength for heave is about 14 m, 0.07 cycles/m, where the coherence may
be seen to be quite high, 0.4-1.0 for the wide range of types of the three roads reported. At a wheel hop
frequency of about 10 Hz, the wavelength is 2 m (depending on the speed), which is a spatial frequency of
0.5 cycles/m, requiring extrapolation of an undulating curve, with a coherence possibly anywhere in the
range 0-0.4, perhaps even more in some cases.
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Figure 3.9.4 Coherence between two adjacent tracks (Verschoore et al., (1996). Reproduced with permission from:
Verschoore, Duquesne and Kermis (1996) ‘Determination of the vibration comfort of vehicles by means of simulation
and maeasurement’, EJME 41(3), pp. 137-143.

The real road is manufactured in a highly directional manner, so there is little reason, a priori, to expect
the road to be isotropic (properties independent of direction), and in some cases clearly it is not. For
example, in soft ground when there are ruts from the passage of the wheels the transverse section has a very
strong spectral density at a particular wavelength. Studies of metalled roads do indicate lack of isotropy,
but in a highly unsystematic way, so isotropy may still be a reasonable way to anticipate the relationship
between adjacent tracks. When there are no actual data, and aroad of two or more tracks is to be generated,
isotropy is the logical assumption. Figure 3.9.5 shows the coherence between tracks calculated on this
basis.

A numerical road of two adjacent tracks is then to be created from a spectral density and a coherence
graph. For each spatial frequency in turn, one track is made as for a single track. For a real road, analysis of

1.0

0.8

w

Lr(m 28T

S() g4l

0.2

0.01 0.1 1.0
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Figure 3.9.5 Coherence between adjacent tracks, on the assumption of a spectral density with W = 2.5 and isotropy.
The track spacing is 2b. Reproduced with permission from: J. D. Robson (1979) ‘Road surface description and vehicle
response’, 1JVD 1(1), pp. 25-35. © Inderscience.
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the second path would show a slightly different amplitude, but for the simulated road it is usual, and
reasonable, to use the same amplitude for the two tracks. The second track is therefore usually given the
same amplitude as the first. The phase difference between the tracks depends on the coherence for that
wavelength. However, the coherence is not explicit, and is only a guide to the range of randomness, and
actually the distribution is not specified, only the effective mean. For a given wavelength and coherence
from the graph, the phase difference ¢ may be taken with reasonable realism as

¢ = £ 7(l — Cp)Rand

with equal probability for either sign, where Cp is the coherence between the paths and Rand is a 0-1
random deviate. Alternatively one can use a phase difference of

¢ = +27nsT Rand
or
¢ = nngT{2(Rand + Rand + Rand)}

where it should be noted that the sum of three independent Rand calls is not the same as 3 x Rand.
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Ride Geometry

4.1 Introduction

Ride and handling motions of the body are the results of road roughness and control inputs, and are
associated with movement of the suspension. Therefore, it is necessary to specify various aspects of the
position and shape of the vehicle body, suspension and tyres. This may be done in a general way applicable
to all forms of suspensions, in terms of suspension bump position, body ride heights, etc. The vehicle
body ride position is specified by its heave, pitch and roll values. When the car is in combined braking
and cornering, the consequent heave, pitch and roll result in a different suspension bump at each wheel.

Bump is upward displacement of a wheel relative to the car body. Droop is negative bump. Heave is
symmetrical upward displacement of the body, or of an axle, then often called double bump. These are
special cases of the general terminolgy of vehicle positions and velocities, surge (X), sway (Y), heave (Z),
yaw (about the vertical axis), pitch (about the lateral horizontal axis) and roll (about the vehicle
longitudinal axis).

Bump and body heave influence the wheel camber and steer angles relative to the body and road, and
also influence the spring and damper forces and hence the tyre vertical force. These all influence the tyre
lateral force. The terms ‘bump’ and ‘droop’ may also be applied to velocities to show the direction of
motion; in that case it should be borne in mind that a bump velocity may occur in a droop position, and vice
versa. Bump velocities also affect the slip angle because of the scrub velocity component. Body roll in
cornering gives a combination of bump and droop on opposite wheels, relative to the body.

Figure 4.1.1 shows an assortment of tyres with widely varying tread patterns for various applications.
For a given vehicle, the best wheel/tyre width and tread form depend on the road material (tarmac, mud,
snow, surface water, etc.) and surface shape (roughness, etc.).

4.2 Wheel and Tyre Geometry

Tyre geometry can be an extremely complex subject, particularly for the analysis of carcase reinforce-
ment, which will not be discussed here; this section covers only basic wheel and tyre deflection geometry
and terminology. Figure 4.2.1 gives the basic dimensional definitions. Contact patch shapes are generally
somewhat more elliptical in shape. The gross contact patch area is the area within the outer non-concave
profile. The net area is the area of rubber deemed to be actually in contact with the road, about 75% of the
gross area for a normal tyre. The contact patch solidity is the net area over the gross area, and is high for
best grip in dry conditions, but low for good water drainage. At a finer scale, of course, even the net area
is only partially in actual contact, with the rubber draping over the fine road asperities.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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Figure 4.1.1 Some example tyre types and tread forms (Goodyear).

The entire unloaded wheel can be perceived as approximately a section of a sphere, a torus or a cylinder,
Figure 4.2.2. For comparison with the highly idealised shapes of Figure 4.2.2, Figure 4.2.3 shows the
section of a very early drop-rim tubed tyre, which is almost perfectly toroidal. Figure 4.2.4 shows a wide
dry-weather racing tyre section from the days of extreme tyre widths, almost cylindrical in shape to place
as much tyre rubber in contact with the ground as possible for maximum grip.

Figure 4.2.5 shows how the sectional shape of the passenger car tyre has changed over the years. This
now seems to have largely stabilised, with only sports and high performance cars going below 60%
sectional aspect ratio.

The term ‘unloaded radius’ is self-explanatory, although the value varies a little with inflation pressure
and wheel rotational speed. A typical passenger car uses a 12 inch nominal diameter rim (305 mm)
carrying a 600 mm outer diameter tyre, i.e. an unloaded radius of 300 mm.

In side view, the tyre is subject to a radial deflection with flattening at the bottom according to the load,
Figure 4.2.6. The term ‘loaded radius’ means the height of the wheel centre above the ground. The loaded
radius is therefore the unloaded radius minus the tyre vertical deflection:

RL:Ru—]’lT

For a passenger car tyre, a typical static deflection is 14 mm.
Unfortunately, the loaded radius is often incorrectly called the rolling radius, which is really the
quotient of advance speed of the wheel centre over the angular velocity:

Vx
Rg = —
70

The rolling radius is sometimes also known as the effective radius or the effective rolling radius.
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Figure 4.2.1 Tyre and rim leading dimensions.

By simple geometric analysis of Figure 4.2.6, the angle subtended at the wheel centre by the contact

patch is
R h
Ocp = 2 acos (ﬁ) = 2 acos (1 — é)

Typically, this is about 35°. The length of the contact patch is

ch = 2RU sin 9Cp ~ \/ SRUIZT

Typically this gives about 180 mm, in agreement with direct measurement.

(a) (b) ()

Figure 4.2.2 Basic wheel shapes in front view: (a) spherical; (b) toriodal; (c) cylindrical.
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Figure 4.2.3 An early drop-rim wheel with tubed toroidal tyre.

As seen in Figure 4.2.6 and Table 4.2.1, doubling the vertical deflection increases the contact patch
length to about 270 mm at a subtended angle of 50°. This covers the usual operating range of varying
normal force.

The tyre can be compressed a total of about 70 mm from Ry before it is crushed against the rim, about
56 mm from the static position, although this dimension is sensitive to the tyre aspect ratio. The subtended
angle is then 80° with a maximum contact patch length of 385 mm.

Evidently, the contact patch length is not proportional to the deflection. With the tyre normal force
mainly (80%) dependent on the inflation pressure, the approximately linear Fy(/it) characteristic requires
that the contact patch width also increases with load, as is reasonable for a spherical tyre form or for a
toroidal one, but not for a cylindrical one.

Figure 4.2.4 A sports racing car rear tyre from the ultra-wide era (Porsche 917), exhibiting a near cylindrical
form.
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Figure 4.2.5 The progressive development of cross-sectional geometry (profile aspect ratio) of passenger car tyres
(Continental).

(d)

(a)

272 230

8 70

Figure 4.2.6 Idealised tyre deflection geometry.

Where the rolling tyre arrives at and leaves the ground, at the ends of the contact patch, the tread
makes a turn through an angle of 6/2. Figure 4.2.7(a) shows the simplified geometry, whilst Figure 4.2.7(b)
shows how the idealised tread curvature varies with position, the real graph being somewhat rounded,
of course. When the wheel is rolling, at entry to the contact patch the tread is sharply bent into a small
radius, and then promptly flattened out to zero curvature. At the rear of the contact patch, the tread is
sharply bent and then promptly reverts to the unloaded radius. This severe multiple flexing of the tread
is a large factor in the tyre rolling resistance.

Table 4.2.1 Tyre compression geometry (passenger car tyre, Ry =300 mm)

Condition hr (mm) Ry, (mm) 0 (deg) Lcp (mm)
Static 14 286 35 181
Double 28 272 50 253

Limit 56 244 80 385
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(a) (b) 1

CP cpP

Figure 4.2.7 (a) Tread curvature distortion at the ends of the contact patch. (b) Tread curvature versus position,
idealised.

4.3 Suspension Bump

Bump is upward displacement of a wheel relative to the car body, sometimes applied more broadly to mean
up or down displacement. Itis also known as compression or jounce. The opposite, a lowering of the wheel,
is called droop, rebound, extension, or negative bump. Bump is so called because, of course, this is the
basic suspension deflection when a single wheel passes over a road bump. When a pair of wheels rises
symmetrically this is called double-wheel bump, often referred to simply as double bump. Heave is a
vertical upward motion of the body without pitch or roll. A given body heave value then evidently gives
equal negative bump all round. Heave is sometimes also known as bounce. Double bump at an axle is
equivalent, for suspension deflection, to a negative heave of the body at that axle.

4.4 Ride Positions

The simplest ride model, the heave model (sometimes the so-called quarter-car model), simply has a body
mass and wheel mass with associated suspension and tyre stiffnesses and damping. Only heave motion is
allowed. For racing cars, the suspension structure compliance may also be significant. The passenger on a
seat may be added. Figure 4.4.1 shows such a heave ride model. The terminology ‘quarter-car model’
arises because it appears to have one suspension only. However, the quarter-car model leaves a problem
with regard to the mass of the passenger (quarter of a passenger?). Itis better to deem it to be a heave model
with a mass equal to the whole vehicle body, suspension comprising the total stiffness of four corners,
damping comprising the total damping coefficients, and one ‘complete’ passenger on one seat cushion.
Even then, however, the effective mass of the passenger resting on the seat is substantially less than the
complete human mass because the legs are largely supported by the floor, and the driver’s arms are half
supported by the steering wheel.
The parameters of this model, as seen in Figure 4.4.1, are as follows:

(1) passenger (or driver or load) effective mass mp (usually one);
(2) cushion (seat) vertical stiffness K¢ (one);

(3) cushion (seat) vertical damping coefficient Cc (one);

(4) vehicle body (sprung mass) mass mg (whole car);

(5) suspension vertical stiffness wheel rate Ky (total);

(6) suspension vertical damping coefficient at the wheel Cyy (total);
(7) wheel mass (i.e. unsprung mass) my (total);

(8) tyre vertical stiffness K (total);

(9) tyre vertical damping coefficient Ct (total, usually small).
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Figure 4.4.1 Heave ride model including passenger, defining inertia, stiffness and damping coefficient notation and
ride positions.

Geometrically, measured from the datum level at Z=0, there are the following vertical positions
of defining points on the masses:

(1) road height (from ‘roughness’) Zg;
(2) wheel centre height Zy;

(3) body ride height Zg;

(4) passenger ride height Zp.

The variations of these from the static values are the ride displacements, for example
zp = Zg — Zno

and are as follows:

(1) passenger ride displacement zp;
(2) body ride displacement zg;
(3) wheel ride displacement zy,.

There are also:
(1) tyre ride deflection zt = zg — zw;
(2) suspension ride deflection (bump) zs = zw — zg;

(3) cushion (seat) ride deflection zc = zg — zZp.

Expressing the above displacement equations in a summation form,
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The ride displacement of the road can therefore be expressed in three simple ways:

ZR:ZT+ZW
ZR =21 + Zs + ZB

ZR=2ZT + Zs + zZc + zp

4.5 Pitch

Pitch is the angle of the body in rotation about a transverse axis (i.e. nose up and nose down), and is
associated with braking and acceleration transients and response to road roughness. Relative to the static
position, the body pitch angle is 0, often considered positive with the nose up. This is a positive right-
hand rotation about a transverse vehicle-fixed axis to the right, as in the Society of Automotive Engineers
(SAE) axis system. However, in the ISO system, the transverse (Y') axis is to the left, so arguably positive
pitch angle should then be positive nose-down. It is not essential to follow the right-hand rule for
rotations, although in dynamic analysis it is safer to do so. However, the signs can easily be adjusted.
In the application of equations, care is required with this sign convention, which will be that positive pitch
is nose up.

In combination with the road elevations at the axles, the body pitch angle requires ride deflections at the
axles, accounted for mainly by the suspension, and partly by tyre deflections.

4.6 Roll

Body roll is rotation about the body longitudinal axis, arising from cornering activity and road roughness.
In both SAE and ISO systems, the longitudinal axis is forwards, so roll angle is positive for rotations
clockwise seen from the rear, i.e. body down on the right-hand side, as in a left-hand turn. Suspension roll
is formally defined (SAE) as rotation of the vehicle sprung mass about a fore—aft axis with respect to a
transverse line joining a pair of wheel centres. This is unambiguous provided that the ground is flat and
that front and rear wheel centres have parallel transverse lines (e.g. that wheels and tyres are the same size
side-to-side). If the ground is not flat then some mean ground plane must be adopted. The roll angle and
roll velocity are in practice fairly clear concepts. Asymmetries, such as the driver, mean that the roll
angle is not automatically zero under reference conditions, although it is usual practice to work in terms
of the roll relative to the static position.

Body roll is accommodated by suspension roll, plus some axle roll from tyre deflection, Figure 4.6.1.
On a level road (i.e. zero road bank angle)

¢bp = s + P4

For a passenger car, the axle roll is generally fairly small compared with the suspension roll, but this is
certainly not true for many racing cars with stiff suspensions, where inclusion of the axle roll angles is
essential.

For a torsionally-rigid vehicle body, in relation to the torsional moments applied, the body torsion angle
¢pr is negligible. This is applicable to most passenger cars, in which case

¢pr =0

¢t = Ppe

&pr = Pst + Par
Gpr = s + Par
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Figure 4.6.1 Body roll, suspension roll and axle roll on a flat, level road, rear view.

In the case of most trucks, and some racing cars, the body torsion angle ¢z needs to be considered, in
which case

bpr = bgr + Par
¢Br = ¢Sr =+ ¢Ar
¢bpr = Ppr — Pp;

The roll gradient is the rate of change of roll angle ¢ with lateral acceleration A:

_4¢
S dA
The body roll gradient is the sum of suspension and axle roll gradients:

kpp = ksp + kagp

kg

Roll is geometrically equivalent to bump of one wheel and droop of the opposite one, relative to the
body. In a rolled position, suspension geometry is generally such that there are changes of wheel steer
angles relative to the body. This is roll steer, dealt with in Chapter 5. It is equivalent to bump steer for
independent suspension, but not for solid axles. The rolled body position also results in wheel camber
relative to the body, and more importantly a wheel camber angle relative to the road, introducing camber
forces. In general, in the rolled position the spring stiffnesses on the two sides are different, usually greater
on the lower side, so there is some heave of the body in consequence of roll. This is spring jacking. If a
droop stop is engaged first, the body may be lowered. There are other jacking effects through the links in
cornering and through damper action. Roll speed generally results in a scrub speed of the tyres relative to
the ground, causing temporary changes to slip angles and hence to tyre cornering forces.

If the road is not flat and level then additional analysis is required. The first case is a flat but non-level
road, as for example on a banked high-speed road. At a road bank angle ¢y, Figure 4.6.2, the body roll
relative to the datum plane is

bp = dr + Pa+ b

If the road is not flat, then the road bank angles are different at the two axles. Including the possibility of
body torsion, then,

bpr = Ppre + Par + Pt
¢Br = d)Rr + d)Ar + d)Sr

The road torsion and body torsion angles are

d)RT = d)Rf - ¢’Rr
¢BT = ¢Bf - ¢’Br
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Figure 4.6.2 Body roll, suspension roll and axle roll on a flat, non-level road, rear view.

4.7 Ride Height

Ride height is the position of the body (sprung mass) above the basic ground level datum plane. The
dynamic ride height is the ride height relative to the static position. In general, during acceleration, braking
or cornering and on rough roads, the ride heights vary continuously and have different values at each
wheel. The set-up of the vehicle on an accurate level surface is the static ride height, in practice frequently
referred to simply as ride height. Values are specified for the front and rear of the vehicle. Normally it is
assumed that the vehicle should have zero body roll in the static position, although some static roll may be
specified in special cases, such as racing vehicles on tracks with turns predominantly in one direction.

The front and rear ride heights may be specified at any points that are convenient for measurement.
Hence particular points on the front and rear bodywork may be used. However, from the point of view of
vehicle dynamics, it is the ride heights at the wheels that are of importance. Hence, for passenger cars it is
convenient to measure the ride height at the highest point of the wheel arch opening, the so-called eyebrow
level. For ground-effect racing cars, the rules frequently specify a flat, or partially flat, underbody, in which
case this flat plane is often used to define the ride heights. Alternatively, measurements may be made to the
inner axis of the bottom suspension arm.

Under running conditions, the ride heights or vertical positions of the body (sprung mass), of the wheel
and of the local road position are measured from a datum level, typically the mean road plane. Figure 4.7.1
shows this for one suspension unit. Hence there are vertical positions Zg to some reference point on the
body, Zy to the wheel centre and Zy to the road height above datum. Each of these has four values, one at
each wheel specified by appropriate subscripts, normally either:

(1) f and r for front and rear, with L and R for left and right, or i and o for inner and outer.
(2) 1, ..., 4 in the order

1: left front
2: right front
3: left rear
4: right rear

as in Figure 4.7.2.
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Figure 4.7.1 Body, wheel and road positions above the datum level
The static (subscript 0) ride-height positions of body, wheel and road are Zgg, Zwo, and Zgro. The
increase of these in dynamic, running condition compared with the static condition, represented by lower

case z, becomes
zgp =Z — Zpo
zw = Zw — Zwo

In the case of the road, fixed in position, Zry may most conveniently be taken as zero, so

IR = Zr —Zpo = 2R

The unloaded tyre radius must be
Ru = Zwo + hro

fL fR
L R
rL rR

Figure 4.7.2 Notations for the four wheels.
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so the static tyre deflection is
hto = Ry — Zwo
The static loaded radius is
Rro = Zwo = Ru — ho
In running conditions, the loaded radius is
RL=2Zw —Zx

The running tyre deflection is
hT = RU — RL

which, however, cannot be negative. This becomes

ht = hto — Zw +Zg

The increase of tyre deflection zt is simply

ZT = ZR — ZW
Frequently in handling analysis, the road is deemed to be smooth and level, giving

ZRZO
hr = hro — 2w

T = —Zw
The suspension bump deflection is

Z§ = Zw — ZB

The basic body height is measured at the centre of mass, giving a single value for Zg. Incorporating the
body pitch angle 6g (relative to static 6g,), the body roll angle ¢ (the body not assumed torsionally rigid,
the static roll assumed to be zero) then changes the body height at the four wheels, that is, the body ride
heights are, with pitch angle sign convention positive nose-up,

zpfL = zg + asinfg + % T; sin gy
ZpR =z + asinfp — %Tf sin ¢p;
Zp, =z — bsinfp + % T, sin ¢y,
R = 2B — bsinfg — 5 Ty sin g,

where a and b are the front and rear partial wheelbases. The pitch and roll angles are generally moderately
small, with sin 8 ~ 0, so it is common practice to use the computationally much more efficient

g =z + aOp + 5 Tt by
ZpmR =2z + a0 — 5 Tt by
Zp, =z — b O + 5 T; bp,

1
zgr =z — bOp — 5 T; ¢y,
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Normal practice would be to precalculate the front and rear mean ride heights, and the half-track values
too of course, with

ZBf = ZB +a63

ZBr — ZB — bOB

ZB. = ZBr +
1
ZBR = ZBr — (5 Tr> bp:

There are similar expressions, but with some sign changes, for the small deflections of the unsprung
mass considered normally in terms of a pitch angle and front and rear roll angles. These are tyre, unsprung
mass or axle, pitch and roll angles and deflections. In practice they are usually called tyre deflections,
axle roll angles, and unsprung pitch angle.

The actual body ride positions are given by equations of the form

Zpi. = ZgfLo + ZBIL

With dynamic solution of the tyre deflections, and hence wheel heights, the suspension bump
deflections during running are then of the form

ZSfL. = ZWfL — ZBfL

which is positive for bump (suspension compression).

Similar equations to the above apply for velocities. In a time-stepping computer simulation the
velocities will usually be obtained by integrating the acceleration over the time step, or possibly in some
cases from displacements divided by the time increment.

For any given body position (heave, pitch, roll) the four ride heights and ride velocities can be evaluated
as above. In a handling analysis, the frequency range considered will normally be below the wheel hop
frequency, so in steady-state handling the wheel will often be assumed to adopt an equilibrium height
according to the body ride height, the suspension stiffness and the tyre vertical stiffness. Hence the
position and velocities are determined, from which the suspension stiffness and damping forces and
tyre forces follow.

4.8 Time-Domain Ride Analysis

The road stimulus considered may be a simple sinusoid to investigate the vehicle behaviour at a
given frequency. This may also be done analytically, but with computer time-stepping it is feasible to
have non-linear components. In this case the resulting positions and displacements vary sinusoidally
(for linear components) or approximately sinusoidally (for non-linear) at the forcing frequency, and the
ratio of the response amplitude to the road amplitude gives a transmissibility to each of the wheel, body
and passenger for that frequency.

Alternatively, the simulated road may be given a white or pink noise characteristic, at least over a
frequency range of interest, say up to 15 Hz; the response of each mass then has a semi-random nature
which can be statistically analysed.
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With any stochastic road, there will be an overall root-mean-square (rms) displacement of the
suspension, which can be divided by the road rms displacement to give an rms transmissibility for these
conditions. Spectral analysis will also reveal certain resonances and responses; for example, there will be
an increased body response at the body resonant and wheel hop resonant frequencies.

A third option for the model road, frequently favoured, is to give the road a random nature based
statistically on the character of real roads, in which case the responses can be regarded as more realistic.
The random response of the bodies can then be analysed. The most important results are those for:

(1) the passenger rms response (for passenger comfort, i.e. ride),
(2) the tyre deflection rms variation (for tyre comfort, i.e. handling),
(3) the suspension rms displacement (for suspension comfort, i.e. workspace).

The assessment of passenger ride perception is called the ‘passenger discomfort’ Dp. This is normally
defined as the rms acceleration experienced by the passenger, normalised by dividing by g, standard
gravity (ISO 9.80665 m/s%, Imperial 32.174 ft/s> or US 386 in/s°):

Amms
8

Dp =

Multiplying by the passenger mass, it is seen that this is also equal to the rms variation of vertical force
supporting the passenger divided by the mean vertical force. Also, there is a direct geometrical
interpretation, For a linear cushion, it is the rms variation of cushion deflection over the mean value.

A ride simulation also gives a figure for the rms variation of tyre vertical force. The tyre discomfort is

Dr = (AFVT)rms
F VT, mean

Here Fyris the vertical force exerted by the road on the tyre. Hence the tyre discomfort is the rms value
of the vertical force fluctuations divided by the mean vertical force. Again, for a linear tyre there is a direct
geometrical interpretation: it is the rms variation of tyre deflection divided by the mean deflection.

The basic definition of passenger and tyre discomfort corresponds to the statistician’s coefficient of
variation, or the normalised standard deviation, the standard deviation divided by the mean. The rms value
of a Gaussian distribution with zero mean is one standard deviation.

The suspension deflection or workspace can also be expressed in various ways as a suspension
discomfort.

4.9 Frequency-Domain Ride Analysis

Frequency-domain analysis considers the behaviour of the vehicle in terms of its response at any given
frequency of stimulus. Such analysis therefore produces results such as graphs of the transmissibility
against frequency.

For a simple linear system the behaviour at a given frequency may be obtained analytically. For more
complex models, or with non-linear components, it may be obtained by time-stepping analysis at each of a
series of frequencies of sinusoidal road profile or, more efficiently in general, by a broad spectrum
stimulus, using a road with some spectral distribution, with the response being spectrally analysed, the
transmissibility then being the amplitude ratio of response to stimulus, for each frequency of interest
through the spectrum.

The geometry of the stimulating road, then, may be sinusoidal, with various spatial frequencies taken in
turn, or stochastic, being either an actual road profile trace, or, more likely, a profile generated by inverse
Fourier transform from a spectral density definition such as the standard ISO road, as discussed in Chapter 3.
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4.10 Workspace

The tyre, suspension and seat cushion are often analysed as simple linear components, but even then they
have a limited range of action. The tyre will leave the ground at a negative dynamic deflection equal to the
static value. The suspension can hit the bump stops or droop stops, and the seat cushion will also have its
limits. These define the available workspace for each compliant component. The workspace in use is the
result of the dynamic response of the system to the road roughness. Typically the suspension bump
deflection will be analysed statistically to give a standard deviation of position for a given road.
The workspace requirement will then be considered to be about 3 standard deviations in each direction,
which will occasionally be exceeded. Similarly, the workspace requirement of the tyre and seat cushion
can be analysed. In practice, the suspension workspace requirement can be reduced by the use of a stiffer
spring, so there is a trade-off between the softness and comfort of the central action of the suspension
and more frequent limit impacts. A higher speed of travel increases the stimulus, because of the character
of the road spectrum, so high-speed vehicles need stiffer suspension for comfort, avoiding limit stop
impacts, not just for handling qualities.

With a typical passenger car static tyre deflection of 14 mm, if the 300 workspace exceeds this value
then the tyre will leave the ground intermittently. This is a standard deviation of less than 5 mm.

1






Vehicle Steering

5.1 Introduction

Directional control of a road vehicle is normally achieved by steering the front wheels, that is, by rotating
them about aroughly vertical axis. The effective steer rotation of the wheels relative to the body centreline
is represented by 6 (delta). This is mainly the result of steering handwheel movement by the driver, but
partly the result of suspension characteristics (bump steer, roll steer and compliance steer). Rear-wheel
steering is generally unsafe at high speeds, but because of its convenience in manoeuvring it is sometimes
used on specialist low-speed vehicles, such as dumper trucks. This is in contrast to aircraft, which usually
have tailplanes and are rear steered by elevators and rudder. Some interest has been shown in variable rear
steering for passenger cars, supplementing conventional front steering, and this is has been commercially
available.

In the early days of motoring, various hand controls were tried for the driver. Tiller steering, as used on
boats, for example as on the 1894 Panhard-Levassor in Figure 5.1.1, was satisfactory at low speed, but
often dangerously unstable at high speed. The wheels steered in the same sense as the tiller, so the tiller was
moved to the right to make a left turn. The driver then tended to fall centrifugally to the right, exaggerating
the turn, sometimes leading to an unstable divergence with disastrous roll-over. Tiller steering was greatly
improved by Lanchester who reversed its action to give better stability. It was Benz who introduced the
steering wheel, and this was almost universal by 1900. Tests in other control applications show that the
hand wheel is the best way to combine rapid large movements with fine precision. For cars, the road wheels
steer through a total angle of about 70°, and the steering wheel through three and a half turns, requiring a
gear ratio of 18. The average is actually about 17 for power-assisted steering and 21 for unpowered
steering. For trucks the steering-wheel movement and gear ratio are about twice those for cars. A high
steering gear ratio means a smaller steering force at the hand wheel rim, but a greater angular movement is
needed.

The steering of the road wheels is not governed exclusively by the steering hand wheel position.
In addition there are:

(1) toe angle — the initial fixed settings;

(2) suspension geometric steer arising from vertical wheel motion coupled with the linkage
geometry, expressed through bump steer or roll steer;

(3) suspension compliance steer, resulting from forces or moments and link compliance, mainly
in the rubber bushes;

(4) steering system compliance, mainly arising from torsional compliance of the steering
column.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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Figure 5.1.1 The front-engined 1894 Panhard-Levassor with tiller steering (uppermost lever) representative of the
very early period.

Depending on the design, sometimes other compliances should be included, such as the long tie rod on a
rigid axle.

The wheel camber angles are also affected by geometric effects (bump camber and roll camber) and by
the flexibility (compliance camber). Bump steer and roll steer are analysed in Chapter 7, and compliance
steer in Chapter 9.

Practical truck steering systems are discussed further in Durstine (1973).

5.2 Turning Geometry - Single Track

When a vehicle moves in a curved path at a very low speed the lateral acceleration is very small, so the
body roll and the axle lateral forces are negligible. Thus the wheel angles are those arising geometrically,
not from the need to produce lateral force. There may, however, be opposing slip angles on the two ends of
an axle, giving zero net force. This non-dynamic geometric motion is kinematic turning.

Temporarily neglecting the vehicle width, a single-track model of the vehicle can be used, as in
Figure 5.2.1. This is sometimes called a ‘bicycle’ model, which is correct in the literal sense of bicycle as
having two wheels, but possibly misleading in that the intended model vehicle does not have roll banking
in cornering as does a common physical bicycle.

The low-speed mean steer angle i required for such a corner is called the kinematic steer angle:

L L L
Ok = arctan| — | ~ arctan| — | ~ = (5.2.1)
R, R) TR

This is the steer angle of the single front wheel in Figure 5.2.1. It is also the mean steer angle of the two
wheels on areal front axle. The SAE standards call this the Ackermann angle, a regrettable choice because
it is nothing to do with Ackermann geometry, which relates to the difference of the two front wheel steer
angles.

The centres of the two ends of the vehicle corner at different radii. This is one reason why four-wheel-
drive vehicles need a centre differential or front over-run clutch. The front cornering radius, as seen in
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R J-

Figure5.2.1 A single-track (upright bicycle) vehicle model, showing kinematic turning (low speed, no lateral forces,
zero tyre slip angles), turning centre Cr.

Figure 5.2.1, is

L
R =—F— 522
f sin 81( ( )
The rear cornering radius is
L
= 523
"7 tan 8k ( )

Several other path radius values are also used. The SAE cornering radius is defined to be to the centre of the
outer front wheel. The clearance radius is the radius needed to clear the bodywork. In vehicle dynamic
analysis, the path radius of the centre of mass is the main one of interest.
The difference of the front and rear central radii is known as the offtracking. The offtracking radius Ror
is
L L

Ror = R — R. = = 524
ot f "7 sind tand ( )

At low speed, with kinematic turning,

Rf =R*+1* (5.2.5)
Using
[*=R}—R*= (R +R.)(R — R,) (5.2.6)
the offtracking can also be expressed as
Ror —Ri— R = — L~ F (5.2.7)

T“Ri+R 2R
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Figure 5.2.2 Attitude angles at a given point of the vehicle depend on the local velocities, as seen here for kinematic
turning.

Cr

where R is the turn radius of the centre of mass. Example values for a passener car are L =2.8 m, § =35°,
R.=4m, Ry=4.88m, Ror = 0.9 m, so the offtracking can be quite large, leading to occasional kerbing of
the rear wheels which ‘cut the corner’. It is more problematic for long trucks, and especially for trailers.

The attitude angle $ at a given point of the vehicle is the angle between the vehicle centreline and the
local velocity vector, which is perpendicular to the radial lines shown in Figure 5.2.2, in which it may be
seen that at low speed (negligible lateral acceleration, zero tyre slip angles) the attitude angle 3, at the rear
axle is zero. Attitude angle is positive with the vehicle pointing towards the inside of the corner, so the
angles are negative in the figure. At the front axle

L L
Br = —arcsinE e (5.2.8)

At the centre of mass, where the attitude angle is usually measured, the attitude angle is

Ly Ly

BN—Ef—ZSK (5.2.9)
Hence the attitude angle at the centre of mass takes a negative value under kinematic conditions; however,
it is positive-going as lateral acceleration develops, because of the increasing slip angle at the rear axle.
Atsignificant speed, in dynamic cornering, tyre slip angles are required to produce the necessary cornering
forces. Then attitude angle develops, and the offtracking also changes, Figure 5.2.3. The front and rear tyre
slip angles are denoted by o and «;, respectively. The angles are exaggerated in this figure for clarity of the
principle. Tyre slip angles are generally just a few degrees, not often exceeding 3° in everyday motoring.
Also, in normal cornering the path radius is much larger in relation to the wheelbase. The turning centre point
Cr can be seen to have moved forward from the rear axle line, or the vehicle can be considered to have rotated

to a new attitude angle relative to the radius line from the turning centre. The attitude angles are then

Br =

L,
—E +a;

P (5.2.10)

L
By = R +oar
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Figure 5.2.3 Single-track model in dynamic turning, with front and rear tyre slip angles ay and «;.

The condition of zero offtracking will occur when Ct has moved forward half of the wheelbase. This
is possible for some particular speed depending on the cornering radius, according to tyre characteristics
etc., and occurs at typically 10 m/s at 30 m radius. At approximately the same speed, the attitude angle at
the centre of mass becomes zero. For a greater speed, the offtracking becomes negative, with the rear of the
vehicle following a path of greater radius than the front.

5.3 Ackermann Factor

Consider now a vehicle with width, having axle track (tread). For a normal vehicle with front steering, to
turn with zero slip angles means that the turning centre Ct must still be in line with the rear axle,
Figure 5.3.1. The front wheels must be steered by different amounts, the inner wheel more, in order
for both of them to have zero slip angle. Although actually invented by Darwin, Langensperger or others
(see Chapter 1), this is widely known as the Ackermann steering concept, and is desirable for low-speed
manoeuvring to avoid tyre scrub, minimising motion resistance, tyre wear and surface damage. Various
geometries are used in practice, more or less related to the basic Ackermann geometry.

For an axle, the difference between the steer angles of the two wheels to give zero or equal slip angles
equals the Langensperger angle A subtended at the turning centre by the axle. Positive Langensperger
angle is with the axle turned out of the corner. In Figure 5.3.1, with kinematic turning, which has zero mean
tyre slip angles, evidently the Langensperger angle is positive for the front axle and zero for the rear axle.
For the front axle

T; sin B¢

% (5.3.1)

Ao = —

where, kinematically, B¢ is negative and Ay is positive. Substituting for the front attitude angle,
kinematically

Ao = ,Tf(,i) 1 Tl (53.2)
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Figure 5.3.1 Turning geometry of a conventional passenger car at very low speed (negligible lateral acceleration).

The basic front Langensperger angle is therefore simply TL/R?, this giving the angle difference (in radians)
required for full Ackermann steering effect. The actual steer angle difference occurring in a given
condition, according to the actual steering mechanism geometry, is

8L7R :8L_8R (533)
For true Ackermann steering, then,
SL_rR = Ao (5.3.4)

for all steer angles, where Ay, is the Langensperger angle at zero lateral acceleration. The Ackermann
factor is then the ratio of the actual steer angle difference to the ideal difference:

fa=— (5.3.5)

which is zero for parallel steering, and 1.0 (100%) for true Ackermann. For areal steering arrangement it is
only approximately a constant.
The difference between & _r and A¢ is sometimes called the tie-rod geometry error:

O1rGE = OL-R — A0 = (fa—1)4r0 (5.3.6)

For vehicles that do a great deal of turning or frequently need a very small turning radius, such as
purpose-built taxis and urban delivery vehicles, full Ackermann is often used. The Apollo ‘Lunar Rover’
vehicle had four-wheel steering, giving a minimum turn radius equal to the wheelbase of 2.286 m, with
close to full Ackermann at both front and rear, to minimise resistance in tight turns on the soft ground. The
traditional London taxi has almost perfect Ackermann over its full 60° of inner road-wheel steer angle.
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Figure 5.3.2 Under dynamic cornering conditions, the axle Langensperger angles are changed, reducing or going
negative as attitude angle is introduced by lateral acceleration.

There is less of a case for Ackermann steering geometry under dynamic cornering conditions. This is
because as attitude angle develops the Langensperger angle subtended by the front axle at the turning
centre reduces, Figure 5.3.2, and will go negative on fast large-radius corners. At the rear, the
Langensperger angle is always zero or negative. Also, because of lateral load transfer, the outer tyre
has greater vertical force, hence needing a greater slip angle than the inner tyre to produce its maximum
cornering force. Finally, roll steer effects may give a significant steer angle difference. Even anti-
Ackermann (negative f) has been used on occasion. If the steering is not perfect Ackermann, then at low
speed each axle wheel pair must adopt equal and opposite slip angles to give zero net force.

Figure 5.3.3 shows the Ackermann geometry for a left turn. Here, the front ‘track’ T is measured
between the steer pivot axes at ground level — virtually the same as the wheel-centre track. Parallel lines are

- ’T —=
8y
P) ' ‘
- > | 51{
!
!
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Figure 5.3.3 Geometry for algebraic expression of the Ackermann condition.
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Figure 5.3.4 Alternative geometric construction of the Ackermann condition.

drawn from the pivots to the rear axle, these being Ry and Ry from the turn centre Ct, as shown. The
algebraic expression for the Ackermann relationship is

R R

cotSg — cotdy, = (5.3.7)

so for exact Ackermann effect

T
cotdg — cotd, = 7 (5.3.8)
This relationship can be expressed in an interesting geometric way, as in Figure 5.3.4 (see also
Heldt, 1948). A line is drawn from the centre of the front axle to the left rear axle point (for a left turn). The
steer angles, laid out as shown, should meet on this line. This can be proved as follows. In the diagram,

_ (1 1 o _aPT
pcotdgr —pcotd = (5T+q>f<§qu) —2q—2z§
SO

T
COtOR — cotdy, = I

as required.

One convenient way to obtain complete or partial Ackermann steer angles is to angle the steering arms
inwards (for a rack or tie rod behind the kingpins), as in Figure 5.3.5, so that as steer is applied there is a
progressive difference in the effective moment arms of the steering arms. This slanting of the arms also
helps with wheel and brake clearance. Itis widely believed that aligning the steering arms so that their lines
intersect at the rear axle will give true Ackermann steering (the Jeantaud diagram). However, this is far
from true, the actual Ackermann factor varying in a complex way with the arm angle, rack length, rack
offset forward or rearward of the arm ends, whether the rack is forward or rearward of the kingpins, and
with the actual mean steer angle. The Jeantaud arrangement with a single track rod and the steering arms
projected meeting at the rear axle actually gives about 60% of full Ackermann effect. To obtain an
Ackermann factor close to 1.0 may require the projected steering arm intersection point to be at about 60%
of the distance to the rear axle.
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/‘ Pivot axis

/" Steering arm

Tie rod

Figure5.3.5 Basic Ackermann steering mechanism, using a single tie rod with steering arms inclined inwards, in plan
view. The section is at the height of the steering system, with the corresponding pivot axis point.

Moving a steering rack forwards or backwards to change the track-rod angle relative to the steering arm
can be a useful way to obtain the desired Ackermann factor, the most important single variable being the
angle between the track rod and the steering arm in plan view, the Ackermann factor being proportional to
the deviation of this angle from 90°. Figure 5.3.6(a) shows the steering arm angle usually considered
important, as indeed it is with the aligned rack and track rods. Figure 5.3.6(b) shows the angle that is
actually important, the deviation from 90° at the steering arm to track rod joint. Figure 5.3.6(c) shows this
angle opened up by moving the rack to the rear, increasing the Ackermann effect. Evidently, inclination of
the steering arms is not required at all, it can all be done by positioning the rack to give the necessary
included angle. With this method, forward steering arms need not be angled out, and can even be angled
inwards, as in Figure 5.3.6(d), although this increases the loads and wear on the rack.

As an interesting comparison, Figure 5.3.7 shows the La Mancelle/Benz type of mechanism, in which
the desired steering geometry is instead obtained by the triangular centre plate.

Considering the included angle between the track rod and the steering arm, with a conventional system,
as seen in Figure 5.3.6, denoting the deviation from 90° (n/2 rad) as the steering linkage Ackermann effect
angle 04, ideal (100%) Ackermann requires

GStA = GStAAI ~ 16% = 08% (539)
(@) (b)
HSIA eStA QStA eStA
(©) (d)
QStA €StA
HStA QSIA

Figure 5.3.6 Ackermann effect achieved or altered by rack position.
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g

Figure 5.3.7 The La Mancelle/Benz type steering mechanism, using a triangular centre member to give the desired
Ackermann effect.

For a passenger car this is about 0.4 rad or 23°. The Ackermann factor is then

6
fan 2 2504 (5.3.10)
Osia1

with the angle in radians.

5.4 Turning Geometry — Large Vehicles

Large vehicles basically fall into two categories: articulated and non-articulated. The latter are typified by
the (omni)bus. Here the vehicle length creates a manoeuvrability problem. A long wheelbase with a given
steer angle gives a large turning radius and large offtracking. Therefore the wheelbase is typically made
shorter, with large body overhangs, Figure 5.4.1. Also, the steer angle is made larger than usual, possibly

50° as in Figure 5.4.2.
—

N

ta

——— ™~

Figure 5.4.1 Turning radius of a bus improved at constant steer angle by the use of a reduced wheelbase with body
overhangs.
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295/80R22 S

Figure 5.4.2 Bus steering system for increased steering angle. Reproduced with permission from: J. Nemeth (1989)
‘Optimization on steering mechanisms for high speed coaches’ in Second International Conference on New
Developments in Powertrain and Chassis Engineering, p325-330. Mechanical Engineering Publications.

Some large front-heavy trucks have two steered front axles, as in Figure 5.4.3. Here, the steer angles
required on the second front axle are somewhat less than those of the first front axle.

More commonly, on a non-articulated truck, there are two rear axles, as in Figure 5.4.4. Here the
kinematic turning centre is aligned with the mid-point of the rear axle lines, although the precision of this
depends on the axle loads and tyre characteristics. The result of the geometry is slip angles at the rear axles,
with all the rear tyres fighting each other but giving zero net cornering force. To minimise this, the axles
should be as close together as possible. This design aspect is not always dealt with correctly.

When two wheels are used at each end of a single axle, as in Figure 5.4.5, even with a differential to
allow different wheel speeds at the two ends of the axle, in cornering the pair of wheels at each single end of
the axle fight each other by producing longitudinal forces because of the difference of longitudinal

o
Cr

Ot Orii L2 Oz i

Figure 5.4.3 Kinematic turning of a truck with two front axles, both steered.
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Figure 5.4.4 Kinematic turning of a truck with two rear axles, with slip angles at the rear despite no net cornering
force.

velocity, this being proportional to the path radius experienced by the individual wheel. To minimise this
problem, the wheels must have minimum axial spacing, just sufficient for the tyres to remain clear of each
other under load distortion at the contact patch. This longitudinal slip problem is less severe than the slip
angle problem of multiple axles. Double wheels have now largely been superseded by high-load-capacity
wide-single tyres.

Heavy articulated trucks now have typically three rear axles with wide-single tyres, as in Figure 5.4.6,
obviously creating large slip angles and conflicting lateral forces even when cornering slowly, because the
first and last of the rear axles have, of necessity, a long spacing, necessarily greater than the wheel diameter
if the wheels are to have the same track. The pivot point on the tractor unit, the so-called ‘fifth wheel’, is a
little in front of the tractor unit rear axle. In some cases, the tractor unit itself has three axles, one steered
at the front and two load-bearing at the rear, in which case the fifth wheel is typically about 30% back from
the first rear axle to the second one. In either case, the trailer is in effect steered by the cart-steering effect of
the rotated tractor unit. The tractor unit itself is steered conventionally on a short wheelbase, requiring
quite a small kinematic steer angle

L
OkT = — 5.4.1
- 5:41)
A LA AL AL LA o 4 L
R]l RR]
. R].." RR-’

Figure 5.4.5 A single axle with wheel pairs has longitudinal slip and longitudinal forces in low-speed cornering,
according to the path radii.
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Figure 5.4.6 Kinematic turning of an articulated vehicle with three rear axles.

The tractor unit can hinge to a wide angle on the trailer, so manoeuvrability is good despite the long trailer
wheelbase.

A car with a single-axle trailer or caravan, Figure 5.4.7, again can achieve good manoeuvrability by
hinging.

\' |
&
Cr |
| o
I : |

Figure 5.4.7 Kinematic turning of a car with a single-axle trailer.

5.5 Steering Ratio

The steering hand wheel angle 85 is the angular displacement of the handwheel from the straight-ahead
position. The overall steering ratio G is the rate of change of steering-wheel angle with respect to the
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average steer angle of the steered wheels, with negligible forces in the steering system, or assuming a
perfectly rigid system, and with zero suspension roll:

déds
G=—( 5.5.1
15 (5.5.1)
The mean overall steering ratio is
s
Gy =— 552
5 (552)

For a linear system G and G, are equal and constant. In this case it is sometimes convenient to introduce
the reference steer angle

ds
Oref = Yel (5.5.3)
This is not the same as & because it incorporates the effect of steering compliance. However, it has
the advantage over &g that it is based on the road wheel angles and therefore it is not very sensitive to
G, unlike 8.

5.6 Steering Systems

The steering system must connect the hand steering wheel to the road wheels with the appropriate ratio,
and also meet other geometric constraints, such as limits on bump steer. It is desirable for the forward
efficiency of the system to be high, in order to keep the steering forces low. On the other hand, alow reverse
efficiency helps to reduce the transmission of road roughness disturbances back to the driver, at the cost of
some loss of the important feel that helps a driver to sense the frictional state of the road. Finally, an
appropriate degree of Ackermann effect must be incorporated. Hence, there is a conflict in steering design,
which must be resolved according to the particular application.

Precision is of great importance in the steering system, and the rack system has a superior reputation to the
steering box, although it is quite difficult to observe any substantial difference between a rack and a good box
system in comparative driving tests. To prevent play in the various inter-link ball joints, they are spring-
loaded. Where the suspension is mounted on a subframe which has some compliance relative to the body, in
the interests of steering precision itis desirable that the steering rack or box also be mounted on the subframe.

On trucks it is still common to use a rigid axle at the front, mounted on two longitudinal leaf springs.
Usually the wheel steering arms are connected together by a single tie rod, Figure 5.6.1. This was the system
used on passenger cars before the introduction of front independent suspension. Steering is effected by
operating a steering control arm A on one of the wheels, by the horizontal drag link B from a vertical Pitman
arm C. This acts from the side of the steering box, which is mounted on the sprung mass. The steering column
is inclined to the vertical at a convenient angle, about 20° for commercial vehicles and 50° for cars.

For independent suspension, two principal steering systems have been used, one based on a steering
box, the other on a rack and pinion. In the typical steering box system, Figure 5.6.2, known as the
parallelogram linkage, the steering wheel operates the Pitman arm A via the steering box. The box itself is
usually a cam and roller or a recirculating ball worm-and-nut system. The gear ratio of the box alone is
usually somewhat less than that of the overall ratio, because of the effect of the links. Symmetrical with the
Pitman arm is an idler arm B, connected by the relay rod C, so that the whole linkage is geometrically
symmetrical. From appropriate points on the relay rod, the track rods D connect to the steering arms E. The
length and alignment of the track rods are critical in controlling bump steer effects. The relay rod layout
provides a convenient basis for allowing any required length of the track rods. The steering box system has
the advantage of a suitable reverse efficiency, but this has become less important than in the earlier days of
motoring because of the improved quality of roads.



Vehicle Steering 113

B Drag link

C Vertical Pitman arm
; A Steering control arm

Steering box

Steering arm

D Tie rod

Steering arm

&

Figure 5.6.1 Truck steering for leaf-spring-supported rigid front axle, plan view, right-hand drive.

e e —
E Steering arm E Steering arm
|~/ D Track rod D Track rod \/I
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|
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\ € Relay rod ~ A Pitman arm

B Idler arm 6

/ Steering box

Figure 5.6.2 Independent suspension steering box with parallelogram linkage, plan view, right-hand drive.

In the steering rack system, the steering column is connected directly to a pinion acting on a laterally
moving rack. The track rods may be connected to the ends of the rack, or they are sometimes attached
close to the centre where the geometry favours this, for example when the rack is high up with strut
suspension. Earlier figures in this section, and in Chapter 1, illustrate such systems. Road shock feedback
can be controlled to some extent by choosing a suitable gearing helix angle, minimising wheel offset, or
increasing handwheel inertia. Flexible mounting of the rack has sometimes been used, but this causes loss
of steering precision. A steering damper may be helpful.

5.7 Wheel Spin Axis

To investigate the variation of steer and camber angles, itis first necessary to be clear about the definition of
these angles and their relationship to the axis direction cosines. This is complicated, a little, by variations
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of sign because of the different ISO and SAE axis system definitions, by the left and right sides of the
vehicle, and by the choice of two directions for the unit vector along any line, and adjustments must be
made to allow for these. Here, generally, the ISO axes will be used (X forwards, Y to the left, Z upwards),
with a left-hand wheel, shown from the rear, Figure 5.7.1.

It is easiest to think of the wheel beginning with zero steer and camber. In that case the wheel rotation
axis is parallel to the vehicle Y axis. The direction cosines of the axis in this case are (0, —1, 0) or (0, 1, 0)
depending on the direction chosen for the axis unit vector, inwards or outwards respectively, for the left
wheel. Either direction could be used, but here the inward direction will be preferred; that is, the unit vector
points from the wheel generally towards the vehicle centreline. At zero steer and camber, the wheel axis
direction cosines for a left wheel are therefore /=0, m=—1 and n=0.

Consider the wheel now to be rotated in steer, and then in camber. The order of these rotations is
important, affecting the equations. The steer rotation is first. Toe-out is taken as positive. The wheel is a

VA
X
Y
(b) C X
Lcos Y sind
Y
B
L cos) cos &
Plan view
(¢)
VA

Vertical plane
Not exactly rear view

Figure 5.7.1 Wheel axis geometry, with steer and camber angles: (a) rear three-quarter view; (b) plan view showing
steer angle; (c) view on ACD with camber angle.
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left-hand one, and positive steer is anticlockwise in plan view, and positive camber (negative inclination
for aleft wheel) is anticlockwise in rear view. The wheel is steered by angle é (delta) and then cambered by
angle y (gamma); see Figure 5.7.1(b) and (c).

In Figure 5.7.1(a), consider a segment AD of the wheel axis, of length L. The triangle ABC is in
the horizontal plane, with AB parallel to the Y axis and BC parallel to the X axis, so ABC is a right angle.
The five lengths in the figure are:

AD =1L
CD = Lsiny
AC = Lcos?y

BC = Lcosysind
AB = Lcosycosé

Now it follows directly that the direction cosines (/, m, n) of the wheel axis, which are the (X, Y, Z)
components of the unit vector along the line AD, are

| = cosysiné
m = —cosy cos & (5.7.1)
n=siny

It is easily confirmed that, as is necessary,
P+ m? +n* = cos? p(sin® 6 + cos> 8) + sin® y = 1

Given particular values for the steer and camber angles, the direction cosines of the wheel axis are
thereby easily calculated. If it is desired to obtain the angles from the direction cosines, equations (5.7.1)
provide three simultaneous equations for only two variables, which are therefore overspecified, but the
equations have the necessary consistency. The solution is

y = asinn
0= atan(—i) (5.72)
m
We also have
/
& = asin
cos y
& = acos —-m
cosy

but for small steer angles the latter is poorly conditioned. These conversion equations are summarised in
Table 5.7.1.

Equations (5.7.1) and (5.7.2) are sufficient for nearly all purposes, but it is possible to write the lengths
and angles generally in terms of the direction cosines, as shown in Table 5.7.2.
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Table 5.7.1 Steer and camber angle direction cosine conversion equations

| =cosy siné

m = —cosy cos b
n=siny
y = asinn

6 = atan<7l)
m

Table 5.7.2 Axis segment lengths and angles in terms of the direction cosines

Length:
engths AD = I
CD =Ln
AC = LV P2 4+m? =LV1-n?
BC =L/
AB = L(—m)
Angles ) i ]
siné = =
VE+m?2  1—n?
—-m —m
cosd = =
VE+m?2 V1—-n?
/
tanéd = ——
m
siny =n
cosy = VIP+m?*=vV1-—n?
n n
tany = =
VE+m?r V1-n?

As far as the signs are concerned, using instead the outward unit vector inverts the sign of m, the ¥
component. For a right-hand wheel, the inward axis unit vector is towards positive Y, so this has inverted
sign of m. A right-hand wheel with outward vector retains the signs.

The SAE axis system has Z downwards, so the sign of n is inverted. The lateral axis Yis still to the left as
in the ISO system.

Wheel inclination angles (I") are the same sign as the camber for a right-hand wheel, but of opposite sign
for the left-hand wheel considered as the standard here.

All direction cosine magnitudes are the same in the various systems and for the two sides of the vehicle
(given that the axis systems are parallel and perpendicular to each other).

5.8 Wheel Bottom Point

It may be required to calculate the bottom point of a wheel disc, i.e. the ground contact point, given the
wheel centre coordinates (xc, yc, zc), the axis direction cosines (/, m, n) and the wheel disc radius R. This is
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Figure 5.8.1 The bottom point of a wheel (left wheel, rear view, positive camber).

simple in two dimensions, but a little trickier in three dimensions. The bottom point is defined as the point
on the disc edge circle with least Z value (not necessarily zero). In two dimensions, Figure 5.8.1, with
camber angle 7, consider the point A at the intersection of the wheel axis with the horizontal plane at the
level of the bottom point B, and D directly below the centre C, in the same plane.

The lengths are:

R
Lac = —
tany
R
LAB -
siny
Rcos?y
Lap = Laccosy = —;
sin y
Lcp = Rceosy
LBD = Rsin b

In a three-dimensional computation, with the axis direction cosines to the inner side of the wheel, use the
factor

1

T Rm?

f

With the direction cosines from C towards A, the camber angle is given by

—n
tany = —
vf
and
R RVT
Lac = =—-——
tan y n

The coordinates of point A then follow:
xpa=xc+/!Lac; ya=yct+mLac; za=zc+nLac
Point D has the same x and y coordinates as C, and zp =zA. Point B is then given vectorially by
Pg = Po+f(Pp—Pa)

expressed in the three coordinates. In implementing this, the possibility of negative camber angle must be
considered, and the possibility that the direction cosines are away from A.
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(a) Inclination angle (b) Caster angle
K ,'/Steering axis kc / Steering axis
/ (Kingpin axis) ™ (Kingpin axis)
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Offset b Trail €

Figure 5.9.1 Geometry of the steering axis of a wheel.

5.9 Wheel Steering Axis

For all systems, the wheels and hubs are pivoted about a steering axis, commonly called the ‘kingpin’ axis,
Figure 5.9.1. Nowadays, on cars at least, physical kingpins are no longer used, the steering axis now
usually being defined by upper and lower ball joints on a double-wishbone suspension, or by one ball joint
and the upper pivot point of the strut on a strut system. In front view, the axis is at the kingpin inclination
angle Ogp, usually from zero to 20°, giving a reduced kingpin offset b at the ground, measured from the
undistorted wheel centre plane. The inclination angle helps to give space for the brakes. Where the steering
arms are forward (rack in front of the wheel centres) it also gives room to angle the steering arms for
Ackermann geometry. Sometimes a negative offset is used, this giving straighter braking when surface
friction varies between tracks. Zero offset is called centrepoint steering. If the kingpin inclination angle is
also zero, it is called centreline steering. Centrepoint steering gives no steering moment from longitudinal
Fx forces at the contact patch; centreline steering gives, in addition, zero moment for longitudinal forces at
the wheel axle height. This latter effect is important because of the variation of rolling resistance on rough
roads, and traction effects.

5.10 Caster Angle

In the side view of Figure 5.9.1(b), the kingpin axis is slanted at the kingpin caster angle 6k, with a value
generally in the range of 0—5°. This introduces a mechanical trail, called the caster trail, which acts in
concert with the tyre pneumatic trail. On cars and trucks it is usual for the kingpin axis to pass through the
wheel spin axis C in side view, but this is not essential, and some offsetting of the axis from the centre
enables the caster angle and trail to be independently varied. The caster angle and the associated caster trail
are important in the feel of the steering. In general, the caster angle varies relative to the body, in
suspension bump zg, with

ke = Oxco + BcasiZs + EBCas2Zs (5.10.1)

where gy 18 the linear bump caster coefficient (SI units rad/m in equations, practical units deg/dm and
deg/inch; to be distinguished from epcy, the linear bump camber coefficient), and g, is the quadratic
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bump caster coefficient (rad/m?). Relative to the road, the castor angle also varies with the body pitch
angle 0p, due to acceleration or braking:

OkcR = — 0B + Okco + EBCast Zs + EBCas2 7§ (5.10.2)

Caster variation is generally undesirable, but is used deliberately in some cases, for example to offset the
effect of body pitch in braking. The caster angle and axis offset (the kingpin axis to wheel centre separation
in side view) give the caster trail, which, in conjunction with the tyre pneumatic trail, is very important in
giving the steering a suitable feel, and also has a significant effect on directional stability because of
steering compliance. The steering feel is adjusted to obtain a desired relationship between lateral force and
total aligning torque, so that the experienced driver can tell from the steering hand wheel torque when the
tyres are approaching their lateral force limit, as expressed in the Gough plot, a graph of Fy versus M.
Adding caster trail moves the point of maximum steering torque closer to the point of maximum lateral
force, or even beyond it — that is, the steering goes light later.

During cornering, the steering must also support the centrifugal compensation forces on the steering
mechanism, for example the rack and the track rods. This is called centrifugal caster, and reaches a typical
moment about the kingpin of 10 Nm.

On a bumpy road, as the wheel rolls the loaded radius constantly varies. The associated change of
effective rolling radius causes changes of wheel angular speed, with associated longitudinal forces on the
tyre, required to provide the angular acceleration. These forces, of magnitude about 1 kN, act on the hub at
wheel axis height, and hence disturb the steering. This can be eliminated only by centreline steering.

Another steering disturbance, for front drive, is the side-to-side difference of the component of the
driveshaft torque along the kingpin axis; this is a problem where the driveshafts have different inclinations,
because they have different lengths, or where they are momentarily differently inclined because of rough
roads. This is worst for large torques, and hence during acceleration. This also applies to inboard brakes.

5.11 Camber Angle

When the wheel is steered, the kingpin caster angle and kingpin inclination angle affect the camber angle,
and this can therefore influence turn-in, and especially can influence handling in small-radius corners. For
realistic steer angles, a positive kingpin inclination angle causes a positive camber on the outer wheel,
growing roughly with the steer angle squared, and being typically 0.15° of camber per degree of inclination
at 30° of steer. Positive caster angle causes a negative camber on the outer wheel, approximately
proportional to steer angle, and is typically —0.50° of camber per degree of caster at 30° of steer. The
actual camber angle is

Y = 7o + arccos(sin fg; cos 8) + Ok; + arccos(sin k¢ sind) — 180° (5.11.1)

The effect of steer angle on camber angle may be represented approximately by
7s = &sc1 8+ £5c2d” (5.11.2)
where esc1, the linear steer camber coefficient, depends upon the caster angle (—6xc in radians), and esc2,
the quadratic steer camber coefficient, depends on the kingpin angle (% Oxc in radians), but changes sign

with the sign of 8, that is,

&sc1 = —Okc (5.11.3)

1
Escy = 5 BKISign(S) (5.] ].4)
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5.12 Kingpin Angle Analysis

The steering axis (kingpin axis), illustrated in Figure 5.12.1, is defined by two points A and B, or L
and U, lower and upper respectively, possibly but not essentially the actual ball joints, and has
four associated angles. The two normally used are the kingpin inclination angle 0k; and the kingpin
caster angle Oxc. An alternative pair, sometimes useful, is the total kingpin angle Oxp with the kingpin
sweep angle Ygp.

In Figure 5.12.1, the kingpin axis AB is of length

Lyxp = \/(XU - XL)2 + (yu —}’L)2 +(zu— ZL)2

The kingpin height is Zxp = DB. The various lengths in the diagram include the kingpin height, the kingpin
caster spacing and the kingpin inclination spacing, which, for a left wheel, with direction cosines from the
lower point to the upper point, are

Zxp = zy —zL = nlgp

Xke = —(xu—x1) = —/ Lgp
Yo = —(yu—yL) = —mLgp

(a) (b) (upper) 7 B
)

A E KC
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a,[,er o Lo Kl
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Wep - prm gy e

Figure 5.12.1 The kingpin axis and its associated angles, with the direction cosines (/, m, n).
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The signs are chosen to make the variables normally positive. The diagonal AD is
Wip = \/X2c + Y2 = VI +mPLyp = V1 — i’ Lyp

The angles may be written as

WKP_ \/1—1’12

tanOgp = o »
tan ¢p :);_II::%

tan Ogc = )Z(_:}i:_é
tanfOx; = ;—z:—%

The relationships between the angles may be deduced from Figure 5.12.1(b):

Zkp tan Ogp cos l/jKP = AE = CD = Zgp tan g

SO

tan Ok = tan Ogp cos Ygp

Similarly,

tan fgc = tan Okp sin Pgp

Given fg; and 6k initially, the above two equations are easily solved for Oxp and {kp. The conversion
equations are summarised in Table 5.12.1. Based on these, various sets of equations may be put together
for the dimensions according to the starting information, for example as in Tables 5.11.2-5.11.5.

Table 5.12.1 Kingpin angle conversion equations

tan fx; = tan Ogp cos Ygp

tan fgc = tan Ogp sin Ygp

tan fxc
tan lpKP - tan GKI

tan Ok tan Ogc
tan Ogp = =

cos YPgp ~ sin Ykp
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Table 5.12.2 Static kingpin analysis given lower point L (xg, yi, z1)
and upper point U (xy, yu, zu)

Zgp = zy —ZL

k1 = atan <;m> = atan <w>
n Zxp
/
Oxc = atan( > = atan< xU>
Zxp
XL — Xy
= atan

Vi ( ) <yL —Yu >

\/(XL —xu)’+ O —yu)’

fxp = atan Zer
B 1
B \/ 1 + tan? Ok + tan? Oxc
| = —ntan Okc
m = —ntan Ogg

Table 5.12.3  Static kingpin analysis given lower point L (x,y;,z1),
Hyp, 0 and xc

Xy = XL — Zgp tan Ogc
yu = yL — Zkp tan Oy

zy = zL + Zkp

Wp = /X + Y
tan Ogc Xkc
= at = atan( ——
Ygp = atan (tan 91(1) a an( Y
WKP)
Oxp = atan| ——
KP ( Zer

Table 5.12.4  Static kingpin analysis given lower points L (xi, yi, z),
Lgp, Ok and Okc

tan Oxc
= atan
IPKP ( tan 60 K1

tan fc tan Oy
Oxp = atan| — = atan
sin Ygp cos Pxp

ZKP = LKP Cos BKP

Xy = XL — ZKP tan HKC
Yu = yL — Zgp tan O

zy = zL + Zkp
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Table 5.12.5 Static kingpin analysis given lower point L (x,y;,z1),
Lkp, 0kp and ¢ip

Ox1 = atan(tan Ogp cos gp)
Oxc = atan(tan Ogp sin Ygp)
Hyxp = Lkp cos Ogp

Xy = XL — Zgp tan Ogc

yu = yL — Zgp tan O

zy = zL + Zkp

5.13 Kingpin Axis Steered

When a wheel is steered, in a coordinate system rotating with wheel steer angle the caster and inclination
angles, as seen by the wheel, change. With a left wheel and left steer angle §, the wheel sees a kingpin
sweep angle

Yxpw = Ygp +0

SO
XKCW = XKC cosd + YKI sin &
YKIW = _XKC sin & + YKI cosd

The variables Okp, Lxp, Zxp and Wkp are invariant in this transformation. The kingpin angles seen by the
wheel are therefore, for example,

Xkcw  Xkc cosd + Yyg sind
tan Ogcw = =
Zgp Zgp

giving
tan Ogcw = tan Ogc cos d + tan Oy Sin &
and
tan O, = —tan Ogc sin d + tan Oy cos 6

Approximating the above equations by a quadratic steer angle gives
Okcw = 9Kc<1 *%52> + 018 = Oc + Oxi 8 — L Okc 8

Oxiw = —Okc &+ 9KI<1 *%52> = 01— Okc 6 — 101 &
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Representing the kingpin angles seen by the wheel as quadratic expressions

Okcw = Okc + esker 8+ esker 8
Oxiw = Ox1 + &skn 8 + eskn 8

the linear and quadratic steer caster coefficients of a left wheel are

eskcl = Oxi

sske2 = —yBke
and the steer inclination coefficients are

eskn = — Okc

eskn = — Ok

These apply to individual wheels, with contrary steer angles on the opposite sides of the vehicle.

5.14 Steer Jacking

Steering of the wheels, in conjunction with the kingpin inclination angle 0, the kingpin caster angle 0k,

the caster offset yco and the caster trail xcr, has the effect of lifting or lowering the steered corner of the

vehicle slightly, affecting the steering feel. The steer jacking effect is positive for a raising of the body

relative to the road, or as a lowering of the wheel relative to the body. Because of the total kingpin

inclination angle Oxp, the rotation required about the kingpin axis to give a wheel steer angle 6 is § cos Oxp.
Considering first a case of zero inclination angle, we have

zgy = —Xcr €08 Okc (1 — cos( ) >sin Oxc — yco sin d sin Oxc

COS Ukp
Now considering small kingpin angles,
zsy = —Xcr Ok %52 —Ycobcé

Considering now zero caster angle, the effect of the inclination angle is

Zs] = Yco €0s g1 <1 —cos < ) ) sin Ok + Xcr sin d sin gy

COS Ukp

With the small-angle approximation, this becomes
zs1 = yco 01 18” + xcr k1 8
Considering a quadratic model of the jacking effect,

2
zgy = &s51 0 +&s12 6
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then the single wheel steer jacking coefficients are

es;1 = Xct Okt — Yco ke

1 1
&sn = ;¥co Ok1 —; Xcr Ok

For a complete axle it is necessary to consider the effects of the two wheels with corresponding steer
angles, negated on one side. The steer jacking effect of the axle is

Zsia = 2esp 8
with no linear effect. The roll effect is

811
=2—25
bsia T

with no quadratic effect. The terms tend to compensate each other. The linear term gives asymmetrical
jacking, i.e. no front-end lift but a small roll effect. The second-order term gives a symmetrical effect, so
giving a small front-end lift. Substituting practical values, the effects are small other than at large steering
angles, but can nevertheless be felt by the driver.
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Bump and Roll Steer

6.1 Introduction

A caris usually steered by changes to the angles of the front wheels, controlled by the driver’s handwheel.
However, the geometry of the suspension linkages also results in changes of the steer angle of the wheels
when they move up or down, effects called ‘bump steer’ and ‘roll steer’. All types of steer angle are
represented by 0 with an appropriate subscript. In dynamic cornering, the tyre lateral forces are associated
with the tyre slip angles, denoted by «. Careful distinction must be drawn between steer angles 6, which
are the angle of the wheel relative to the vehicle centreline, and slip angles «, which are the angle of the
wheel compared with the local direction of motion.

The term ‘bump steer’ means changes of steer angle for a single wheel of an independent suspension
when the wheel is moved up or down relative to the body, in suspension bump and droop. The term ‘roll
steer’ refers to changes of steer of the pair of wheels (i.e. of the axle) when the body rolls. These are
obviously related, but bump steer is the basic form of data for independent suspension, and roll steer is the
basic form for rigid axles. Some forms of bump and roll steer can cause poor straight-line stability, and
very unpredictable and unpleasant vehicle behaviour, the handling being sensitive to small changes of
wheel steer angles. To the driver, a vehicle with significant bump or roll steer, particularly oversteer, may
seem to wander and to be unpredictable.

An axle may have steer effects because of suspension roll or symmetrical suspension double bump. The
whole vehicle may have steer effects because of heave, pitch or roll of the suspension. All of these effects
can be expressed as steer coefficients relating the wheel angle changes to the stimulus. In summary, the
main geometric steer and camber coefficients are those in Table 6.1.1. The angle units are specified in
radians. These are the correct units for use in equations, although the actual values are often expressed in
degrees. The bump steer coefficient is conveniently expressed as deg/dm (deg/inch US). Angle responses
to angle stimulus have no units, being expressible as rad/rad, which is the same as deg/deg.

6.2 Wheel Bump Steer

The steer angle of a single wheel may be represented as

8 =010 +8s + s Zs + EBs2 25 + - (6.2.1)

Here 6 is the complete road wheel steer angle, 6 is the initial (static) toe-out angle at zero bump, 6 is the
wheel steer angle contributed by movement of the driver’s handwheel, egg; is the linear bump
steer coefficient, and egg, is the quadratic bump steer coefficient. More terms could be added to the
polynomial if desired, although this is only necessary for large suspension motions and high accuracy.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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Table 6.1.1 The main wheel, axle and vehicle linear steer variables

(1) éps rad single-wheel bump steer angle

(2) 6rs rad axle roll steer angle

(3) 6pgs rad axle double-bump steer angle

4) Orr rad axle roll toe angle

(5) épeT rad axle double-bump toe angle

(6) &gsy rad/m single-wheel bump steer coefficient

(7) &rsi rad/rad axle roll steer coefficient

8) erun rad/m axle roll understeer coefficient

9) epgsi rad/m axle double-bump steer coefficient
(10) err1 rad/m axle roll toe coefficient
(11) epgT1 rad/m axle double-bump toe coefficient
(12) evaui rad/m vehicle heave understeer coefficient
(13) evpur rad/rad vehicle pitch understeer coefficient
(14) eyrui rad/rad vehicle roll understeer coefficient

For understanding bump steer, the linear and quadratic terms are sufficient. The linear bump steer
coefficient egg; has units rad/m but it is usually expressed in deg/dm (deg/inch US). The quadratic
coefficient egs, has fundamental units rad/m?, but is often expressed as deg/dm?. It is normal practice
to express the values in degrees, but radian units should be used in the equations (1 radian = 180/n =
57.29578 deg).

In general, the linear bump steer coefficient is defined as the rate of change of wheel steer angle with
vertical wheel position (suspension bump deflection), with the steering hand wheel fixed, of course:

dé

— 6.2.2
o (6.2.2)

€BS =

This will be taken as positive for toe-out with a rising wheel. The first linear bump steer coefficient g is
the value of this at the static position. A positive quadratic coefficient egg, gives toe-out in both bump and
droop, proportional to the square of the bump value.

For any independent front suspension, e.g. the double wishbone of Figure 6.2.1, consider the vehicle
body fixed and the wheel to move in bump with the steering disconnected at B, in a controlled ideal way
with no steer angle change of the wheel. The steering-arm ball joint B will then move in an arc with centre
at some point A, called the ideal point or ideal centre, where the position of A depends on the particular
suspension geometry. For most real suspensions, the movement of B is not a perfectly circular arc, but an
arc is a good approximation. With the steering now connected, if the track rod to rack ball joint, or track rod
to relay rod joint, C, is actually at A then there will be no bump steer. This possibility of achieving an
accurate steering motion is an important advantage of independent suspension over a steered rigid axle.
Predictable and precise handling is particularly important for competition and high-performance vehicles,
and in such cases it is considered to be of paramount importance that the rack is mounted accurately at
the correct height, with a tolerance of only 1 or 2 mm, and that the rack and track rods should be of the
appropriate length. In practice, for passenger cars there are often significant production tolerance error
discrepancies of the height, length or alignment of the rack. For ordinary road vehicles complete accuracy
is often not even attempted, deliberate discrepancies being introduced. These are sometimes claimed to
give less wheel response to rough roads or to have handling advantages, although this is a controversial,
and interesting, issue.

The above is a two-dimensional analysis, of course, and in reality the steering and suspension
mechanism is a three-dimensional one. The ‘ideal point’ is really extended in space, usually roughly
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/

Figure 6.2.1 Rear view of left wheel, showing the track rod BC, and the ideal centre A, with ‘errors’ e;, and ey,
possibly deliberate.

along the vehicle, forming an approximately straight line, the ‘ideal axis’. With parallel-pivot-axis double
transverse arms (double wishbones), the ideal axis is roughly parallel to the pivot axes, which may be
inclined somewhat to the horizontal plane, and, even more so, possibly swept outwards to the rear. If the
rack is moved forwards or backwards, then, the ideal rack and track-rod lengths will change somewhat.
The angles of the ideal axis are such that the axis is perpendicular to the plane in which the track-rod end
ball joint centre moves with steering detached. The ideal centre then is the point at which the ideal axis
penetrates the transverse vertical plane through the rack.

Returning to a two-dimensional analysis, as seen in Figure 6.2.1, the two kinds of position error of the
rack end point are the height error ey of the actual joint C, and the length error e of the track rod BC (given
correct adjustment of the static toe angle value). With the wheel static toe angle correctly adjusted, too
long a track rod corresponds to too short a steering rack. The dimensions of importance are then as in
Table 6.2.1. The moment arm length of the steering arm, Lax, is the effective length of the steering arm,
perpendicular to the track rod.

A positive height error is defined to be with the rack high relative to the ideal wheel steering-arm point
(ball joint centre). This may arise from a high rack, a low steering arm, or from a tilted rack with opposite
height errors on the two sides. The usual arrangement is with the track rod behind the steering axis,
although this is not invariable, in which case the consequence of a height error ey is a first-order bump steer
coefficient

€H

EBSI — — (623)

LtrLax

The negative sign follows from Figure 6.2.1, where in bump point B will be forced outwards, toeing the
wheel in. If the track rod is in front of the steer axis then the sign in the above equation is positive.

Table 6.2.1 Bump steer dimensions

ey height error, rack high positive

e length error, track rod long positive
Lax moment arm length of steering arm
Litr length of ideal track rod

Ltr length of actual track rod
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A positive length error is defined to be with the track rod too long, when adjusted for correct static toe:
er, = Ltr — Litr (6.2.4)

This could be due to a rack too short, a steering arm misaligned, or a rack laterally misplaced on the body,
giving antisymmetrical length errors. The result is a quadratic bump steer coefficient

eL

= 6.2.5
2LaxLirg (62.3)

EBS2 =

For an independent suspension, calculation of the ideal pivot centre A for the track rod, Figure 6.2.1, to
give zero bump steer is a purely geometrical problem. However, it really requires a three-dimensional
solution.

In the case of strut suspension, the ideal track-rod length is highly sensitive to the vertical position of
the steering arm, tending to infinity when it is at the strut top, Figure 6.2.2. A common solution is to use
a rack with centre-mounted track rods, and then to choose a rack height for which these are the correct
length, which roughly matches up with the main spring seat. There are various other independent front
suspensions, not often seen nowadays, for which there exist suitable ideal steering layouts free of bump
steer.

If the measured wheel steer angle is plotted against bump, a result such as Figure 6.2.3 is typically
obtained. Actually there is normally also a toe angle at zero bump; this is the static toe, and does not usually
appear in bump steer plots because it is readily adjustable and is measured separately; bump steer is
usually measured only as the change of angle from static.

The measured bump steer can then be characterised in two main ways — the linear and quadratic
components. At zero bump there is a gradient of steer change with bump, dé/dzg, the tangent to the curve at
zero bump, which in this case can be measured from the graph as about 0.3° toe-out in 75 mm bump, that is,
a bump steer coefficient of +4°/m or 0.4°/dm. This linear effect results from the rack height, say about
5 mm too low in this case with the rack behind the wheels, or high for the rack in front. Secondly, there is
a curvature of the graph. In this case the curvature is towards toe-in, which would result from a track rod

Strut
Line of ideal point A
for track rod with ideal inclination
Track rod
T |
Lower arm

I 7/

Figure 6.2.2 For strut suspension, the correct length of the steering arm varies considerably with the vertical position
of the arm.
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Figure 6.2.3 Example bump steer graph.

longer than ideal for a rack behind the wheels, and shorter than ideal for a rack in front of the wheels, as
can be seen by imagining the ideal and actual arcs of the track-rod end. Relative to the tangent at zero
bump, the quadratic bump steer is about 0.5° toe-in in 75 mm bump or droop, so the quadratic bump steer
coefficient here is about —90°/m? or —0.90°/dm?. This would be caused by a rack length error of about
20 mm (at each end).

The initial toe-out tendency in bump means that the wheel itself tends to recede from the bump, and so
possibly reduces the steering fight on rough roads. The quadratic-term curvature toes in the inner wheel in
cornering, reducing its slip angle. This can help to prevent undue wear because of excessive slip on the
lightly loaded tyre, an example of the abandonment of ideal Ackermann steering under dynamic
conditions.

Because of the nominal symmetry of the whole steering and suspension system, even if the above
deliberate steer deviations are adopted, symmetrical axle heave (double bump) should not cause net
steering effects, which is an advantage over a steered rigid axle. Nevertheless, the toe-in varies with load
which can affect steering feel and tyre wear, for which reason if bump steer is deliberately introduced it is
best to design it around a light-load position. Where present, bump steer is often a palliative for some other
fault such as bad weight distribution, and is likely to give poor straight-line stability and tyre wear. At best
such effects compromise the basic handling in order to gain some rough road or other small advantages,
and so should be used with caution.

Many cars are designed with zero theoretical bump steer, but positioning of the steering rack is critical
and sufficiently close tolerances are rarely held in production, particularly if this aspect was not considered
adequately during the design process. Even for a given design, bump steer varies from car to car and even
from side to side of one car, sometimes to the extent that one wheel toes in with bump and the other toes out.
Unequal bump steer left and right, which is heave steer or double-bump steer, is especially bad for straight-
line stability.

6.3 Axle Steer Angles

Given the individual steer angles of the two independent wheels on an axle, the axle can be considered to
have combined steer angles, these being the symmetrical and antisymmetrical components of the
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individual wheel steer angles. The symmetrical part is the mean steer angle of the two wheels. The
antisymmetrical part is the toe angle of the axle. Hence, the axle steer angle is

oA :%(SL + 8Rr) (6.3.1)
and the axle toe angle is
o = % (6L — Or) (6.3.2)
Given these axle angles, the individual wheel angles may then be deduced as
0L =064 + 61 (6.3.3)
Or =67 — 61 (6.3.4)

Itis apparent from this that bump steer angles of individual wheels can alternatively be expressed as angle
properties of the complete axle.

If the individual wheel static toe angles of an axle are unequal, normally attributable to improper
adjustment rather than production tolerance error, then the axle will have a static steer angle. On an
unsteered axle, at the rear, this will cause crabbing of the vehicle.

6.4 Roll Steer and Understeer

For arigid axle, in cornering the suspension roll angle ¢ can cause a steer angle of the whole axle as a unit.
This can also occur for an axle with independent wheels, with the additional complication of the effect
of suspension roll on the axle toe angle. Suspension heave (double bump) may also cause steer effects.
The axle steer angle may then be expressed as

0a = Oa0 + &rs¢s + eppszs + - - (6.4.1)

with other possible terms, where s is the linear roll-steer coefficient and epgs is the linear double-bump
steer coefficient.

The axle roll steer coefficient egg is the rate of change of axle mean wheel steer angle with respect to
suspension roll angle, and is usually expressed as deg/deg (i.e. degrees of steer per degree of roll), so it is
dimensionless. Formally, the units are rad/rad. For small roll angles, the roll steer angle gg is given in
terms of the roll steer coefficient and suspension roll angle by

Ors = erss (6.4.2)

For independent suspension, the roll steer coefficient is closely related to the bump steer coefficient, but is
also influenced by vehicle track width. For a rigid axle it relates to the steer angle of the complete axle,
whereas for independent suspension it relates to the mean value for the pair of wheels.

The axle roll understeer angle gy must be clearly distinguished from the axle roll steer angle drs. They
are numerically equal but the sign convention is different. The roll understeer angle is positive when it
requires increased handwheel angle to compensate, that is, when it requires increased driver-applied
steering.

Hence the relationship between roll understeer angle and roll steer angle is that they are the same at the
front, but have change of sign at the rear:

Oruf = + Ogrst (643)

Orur = — ORsr
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This also applies to the relationship between roll understeer and roll steer coefficients:

ERUf = + ERSF (6.4.4)
ERUr = — ERSr o

Corresponding roll oversteer coefficients could be defined, but these would simply be negatives of the roll
understeer values.

Axle roll steer is a property of a single axle, whereas axle roll understeer is a property of an axle in the
context of a vehicle, the context defining the attributable sign. Roll understeer may also be a property of the
vehicle as a whole, the vehicle roll understeer resulting from the characteristics of both axles.

The advantage of referring to roll understeer coefficients rather than roll steer coefficients is that in
evaluating the total understeer coefficient or understeer angle the effects are simply added without
constant consideration of a front/rear sign convention. For understeer coefficients,

ERU = ERUf T ERUF (6.4.5)

whereas for roll steer coefficients the total understeer coefficient is
ERU = ERSf — ERSr (6.4.6)

The sum of the front and rear roll steer coefficients has no simple physical meaning in terms of the steering.
If the front and rear axles exhibit equal positive roll steer, the roll understeer is zero, and the steady-state
steering is largely unaffected, but the dynamic response may be altered because suspension roll will cause
transient slip angles.

The smooth-road-condition ideal of zero roll steer may be abandoned in some cases, but there are
definite limitations to the amount of roll steer that is acceptable. Roll oversteer of independent front
suspension (i.e. wheel toe-in in bump) gives severe wheel-fight on rough roads. Roll oversteer of the rear
gives increased body attitude angles, a very unpleasant uncertain feeling for the driver, and bad directional
response to rough roads and to side winds.

It does not seem to be effective to balance an oversteering rear with an understeering front, and really
there is little reason to try to do so. In short, there is good reason to avoid roll oversteer at either end.
Some would argue for rear roll understeer for its reduced attitude angle and hence possibly faster
response, especially for large cars which tend to have a larger dynamic index, but this can lead to problems
with rough roads or wind, and may result in engine torque steering because of body roll in strong
acceleration, unless the power is transmitted through an independent or de Dion axle, or an offset lift bar
is used.

6.5 Axle Linear Bump Steer and Roll Steer

Although the geometry of steering variation is, for independent suspension, expressed by the bump steer
coefficients, from a practical point of view it is the combined action of left and right sides that matters when
the body moves in roll. Hence, it is necessary to deduce the axle roll steer from the single-wheel bump
steer. Of course this may be done by calculating the individual suspension bump values on each side from
the suspension roll angle ¢g, the bump steer angles from the suspension bump values, and the roll steer
angles from the bump steer angle values. However, it is also of interest to obtain the roll steer coefficients
directly in terms of the bump steer properties.
Given a linear bump steer angle, with constant bump steer coefficient,

dps = &psiZs (6.5.1)
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and the relationship between roll angle and individual suspension bump

zsR = 4, Ts
6.5.2
zsL = —; T (6.32)
then the individual wheel bump steer angles, toe-out positive, are
dpsr = +essi; Tds
(6.5.3)

1
Sps = —&gsi; [ds

To convert these to roll steer angles, there is a sign change on the left, because bump steer is positive for
toe-out on both sides, but roll steer must have the same sign for the same sense of rotation on the two sides
of the car:

OrRsR = + OBsR
’ ' 6.5.4
OrsL = — OpsL ( )

The wheel roll steer angles are therefore

drsr = +&Bsi 3 Tos

6.5.5
drsL = +esi Tdg (6.55)
The axle mean roll steer angle is therefore
8rs = 5 (Orsr +OrsL)
1 1
= 3288513 s (6.5.6)
= (% Tegsi ) os
Comparing this with equation (6.5.1), the linear roll steer coefficient is
ERSI = % Tegsi (6.5.7)

This is the fundamental relationship between roll steer and bump steer for an independent-suspension
axle.

Because the bump steer angles are equal and opposite in this simple symmetrical case, there is no axle
toe angle resulting from the roll angle.

6.6 Axle Non-Linear Bump Steer and Roll Steer

Consider now the more complex case, with quadratic bump steer included, and also vehicle asymmetries.
The individual suspension bumps are still

zsr = +3¢sT
6.6.1
zsL = —3¢sT (661
The wheel bump steer angles are
OBSR = &BSIR ZSR T EBS2R z3
TSR (6.6.2)

2
OBsL €BSIL ZSL + €BS2L Z5



Bump and Roll Steer 135

which are therefore )
SBSR = €BSIR ( +3 ¢>sT> +Bs2R ( +3 d’sT)

2 (6.6.3)

OBs,L = €BsiL <—% ¢sT) + &BsaL <—% ¢sT)
These bump steer angles are positive for toe-out on each side, so the equivalent mean roll steer angle for the
complete axle is half of the difference of the bump steer angles of the two wheels:

6RS = %(BBS‘R - 6BS.,L)

Since individual wheel toe-out is positive, this gives positive roll steer corresponding to the axle
effectively turning out of the curve. Hence, this is an understeer effect at the front and oversteer at the
rear. Substituting the above expressions, and noting that a negative valve squared is positive, the axle roll
steer angle becomes

2
drs = ; dsT(eBsir + eBsiL) + %(% ¢>ST> (eBs2r— &BsaL) (6.6.4)
Hence the first-order and second-order roll-steer coefficients are

ERS1 = % T(eBsir +€BsiL)
6.6.5
ERs2 = %TZ(EBSZ,R —&psaL) ( )

Therefore, any linear bump steer gives linear roll steer. However, symmetrical second-order bump steer

does not give second-order roll steer, which only arises from asymmetrical egg,. Hence, this will tend to be

fairly small, although possibly not insignificant, because it will usually arise from production tolerance

errors rather than from design intent. One feature that can cause it is unequal track-rod lengths in

conjunction with certain types of suspension, a feature which has been used on some passenger cars.
The roll toe angle of the axle is

Srr = 3 (8Bsk +8BsL)

. O 2 (6.6.6)
= ;Ths(epsir —&BsiL) + 5 (5 T¢>s> (eBs2R +&Bs2L)
Hence, the first and second roll toe coefficients are
ERTI = % T(eBsir —€BSiL)
(6.6.7)

)
erm2 = T7(eps2R +epsaL)

Therefore, linear roll toe is due to asymmetry of the linear bump steer, due to production tolerance errors
(e.g. a tilted rack). The quadratic roll toe coefficient is due to quadratic bump steer.

Equations (6.6.5) and (6.6.7) also make it possible to deduce the bump steer coefficients from roll steer
and toe steer values. The equations are

2
EBSIR = T(ERSI + &rT1)
2
EBSIL = T(SRSI - 8RT1)
4 (6.6.8)
EBSIR = 77 (ers2 + €r2)
4
EBS2L = ﬁ(ERsz — £r12)
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6.7 Axle Double-Bump Steer

Consider now an axle bump deflection, which is a suspension double bump, z,, which might occur on
landing after a symmetrical crest, as frequently occurs with some severity on rally cars. The right and left
suspension bumps on the axle are

ZSR = ZSL = ZA (6.7.1)
The individual bump steer angles are

2
OBSR = €BSIR ZA + EBS2R Za

(6.7.2)
SBSL = €BSIL ZA + €BS2L A
These are both positive for toe-out, so the axle (mean double bump) steer angle is given by
8pBs = ,(8Bsr —BsL) (6.7.3)
which is
8pBs = 5 Za(€BsIR — €BsiL) + 22 (eBs2Rr — €BsaL) (6.7.4)
The linear and quadratic double-bump steer coefficients are therefore
EDBS1 = % (eBs1R —€BsiL) (6.7.5)
£pBs2 = 5 (€Bs2R — €Bs2L) (6.7.6)

Hence, both of the double-bump steer coefficients depend upon the side-to-side difference between the
individual bump steer coefficients, and hence upon vehicle asymmetries, normally arising from produc-
tion tolerance errors, for example a tilted rack, although possibly from design asymmetrical track-rod
lengths, etc. The first-order double-bump steer coefficient epgg; is particularly critical for straight-line
behaviour on dips and crests, and suitable design and control of production tolerances must be applied to
ensure only a small resulting value.

6.8 Vehicle Roll Steer

Roll of the entire sprung mass gives suspension roll of the front and rear axles, with total steer effects. The
vehicle understeer coefficients follow easily from the axle roll steer coefficients, allowing for the
understeer sign convention for axle position at the front or rear:

EVRUI = ERUfI T ERUr (6.8.1)

EVRU2 = ERUf2 T ERUR

Assuming equal tracks front and rear, by substitution the vehicle roll understeer coefficients are

1
EVRUI = 4 T(é‘BSLfR + EBS1fL — EBSIR — SBSI,rL)

6.8.2
EVRU2 = % T?(eBsa.m — £Bsa.fL — EBS2.R + EBs2rL) ( )

For the linear coefficient, the units are none, rad/rad or deg/deg as preferred, these having the same
meaning. The quadratic coefficient has units rad™" or rad/rad”.
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6.9 Vehicle Heave Steer

Heave of the entire sprung mass gives double bump of the front and rear axles, with possible steer effects.
For the front axle,

1

EDBSIf = (8BSI,fR *SBsuL)

2
| (6.9.1)
€DBS2,f = 3 (SBSZfR - SBsz,ﬂ,)
For the rear axle,
1
€DBS1,r = 3 (8331,rR - 8BSl,rL)
1 (6.9.2)
€DBS2r = ;5 (eBs2.r — €Bs2,L)
Summing the effects, allowing for the signs, the vehicle heave understeer coefficients are
EVHUI = €DBSI1,f — €DBSLr (6.9.3)
€VHU2 = €DBS2f — €DBS2r
giving the vehicle heave understeer coefficients finally as
1
EVHUI = ;5 ((‘?BSLfR — EBSIfL — EBSIR T SBSLrL)
1 (6.9.4)
EVHU2 = ;5 (eBs2.r — €BS2.fL — EBS2iR + EBs2L)

For the linear coefficient, the units are rad/m for use in equations, possibly expressed as deg/m. The
quadratic coefficient has units rad/m?, possibly expressed as deg/m>.

Body heave will also cause axle toe angle effects. The required expressions for these are easily derived
as above.

6.10 Vehicle Pitch Steer

For body pitching about the centre of mass, with suspension pitch angle g, the axle double bumps are in
the ratio of the partial wheelbases:

Zar = + abs

ca = — bos (6.10.1)

The vehicle pitch understeer coefficients are therefore
EVpUl = %d(SBsLﬂz - 8351,11_)*% b(81331,rR - «S‘BSI,rL) (6~10-2)
EVPU2 = %a(é‘Bsz,ﬂz - SBSZﬁfL) - %b(aBSZ,rR - aBSZArL) (6»103)

For the linear coefficient, the units are none, rad/rad or deg/deg as preferred, these having the same
meaning. The quadratic coefficient has units rad ™" or rad/rad”.

By an adverse accumulation of production tolerance errors, these coefficients may be significant, even
though they are zero in principle for a symmetrical design of vehicle. The main result is a steer effect in
braking, which, combined with reduced stability under braking, can be problematic in extreme cases. The
solution is to hold sufficiently close tolerances on critical dimensions.

Body pitch will also cause toe effects on each axle. The coefficients may be derived as above.
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Two other pitch understeer coefficients can be derived. These are for the combined-heave-and-pitch
ride oscillation modes, which have nodes at particular points, depending on the body inertia and
suspension stiffnesses. The coefficient for a mode follows by methods similar to the above, once the
nodal position for that mode has been determined (e.g. Dixon, 2007).

6.11 Static Toe-In and Toe-Out

A small static toe-in at the rear often has a surprisingly large effect on handling, increasing understeer;
front-wheel-drive vehicles, being lightly loaded at the rear, and therefore having a large rear tyre cornering
stiffness coefficient, are especially sensitive to this. Front toe-out might be expected to have the same
effect. However, practical experience shows the reverse: front toe-out gives a vague steering feel, whereas
front toe-in gives a favourable feel and leads to increased understeer that can be measured on the skid pad.
This seems to be caused by the combination of load transfer, aligning torque, lateral force on caster trail,
and steering compliance. Too much front toe-in affects corner turn-in, giving an unprogressive and
imprecise steering feel.

Static toe settings are governed within quite narrow bands by tyre wear. For the least wear, toe settings
should be arranged to give minimal steer angles when running, regardless of small static camber angles.
This means a small static toe-in for undriven wheels, and a small toe-out for driven ones, so that when the
vehicle is running normally the tractive forces and compliances act to bring the toe angles close to zero.
Within the allowable band for low wear (a total range of about 1°), there is only limited scope to use toe
angles to tune the handling characteristics.

6.12 Rigid Axles with Link Location

Rigid rear axles can be considered in two groups: those with link location and those with longitudinal leaf
springs. In the case of link location, there are lateral location points A and B according to the particular
linkages, defining an axis of rotation of the axle relative to the body. Figure 6.12.1 shows a general
four-link axle. The method is based on studying the support links to find two points A and B where forces
are exerted by the axle on the body. The line through the two points is the axis of rotation of the axle
relative to the body. The roll centre lies on this line, at the point where it penetrates the transverse vertical

Roll centre

lt————

Figure 6.12.1 A rigid axle with link location to the body has two location points which define the relative axis of
rotation. This position and inclination angle of this axis gives the roll centre and the roll steer coefficient.
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plane of the wheel centres. One link pair has an intersection point at A, so the combined force exerted by
these links on the body must act through A (neglecting bush torques and link weight). Similarly, the other
link pair exerts a force through B. The resultant of the two forces at A and B acts through a point
somewhere on the line AB. Suitable points A and B can be found for other axle link layouts. For example,
if the lower links are parallel then the point B is at infinity, so AB is parallel to the bottom links. If the
bottom link pair is replaced by a torque tube or similar system, then point B is the front ball joint. If
transverse location is by a Panhard rod, then point A is the point at which the rod intersects the vertical
central plane.

Because these points define the lateral location of the axle relative to the body, they also define the axis
about which the axle will roll relative to the body if the road is considered to be rolled.

Considering the vehicle body to be rolled about a longitudinal axis parallel to the road, then if the
front location point A is lower than the rear point B the different sideways movements of A and B, A
more inward, will result in a steer rotation of the axle, such that the axle tries to increase its slip angle.
This is at the rear, so it is an understeer effect. If the axle axis is inclined at p radians, positive angle
being down at the front, a suspension roll angle of ¢ results in a rear axle roll steer angle, out of the
curve, of

6RS = _pAd)S (6121)

The axle is actually turned into the curve, for positive p,, reducing the required attitude angle. This is an
understeer effect for a rear axle, so

SRU = pAd)S (6]22)

The roll understeer coefficient (the rate of change of axle roll understeer angle with suspension roll
angle) is therefore equal to the value of p, in radians, that is, in this case value of the first roll understeer
coefficient is

ERUI = P (6.12.3)

This is often expressed as a percentage roll understeer, ps X 100%. The axis angle may be around
0.05-0.10rad, giving the roll understeer coefficient a value of 0.05-0.10 (rad/rad or deg/deg).

The variation of roll steer coefficient with axle load is important. The variation of roll steer with axle
suspension bump is

dSRU

kRUZA = (6124)

dZA

This gives the relationship to load (in newtons) according to the total axle suspension stiffness Kx:

dSRU _ 1 dSRU
dFVA - KA dZA

krupy = (6.12.5)

It can be examined easily by considering the change of the axis angle p from the motion of points A and B
with increasing load and axle bump deflection. If the points move equally in the same direction then there
is achange of roll centre height, but no change of roll steer. In some cases, for example the convergent four-
link suspension of Figure 6.12.1, when the body moves down then A moves down and B moves up, giving a
small change of roll centre height but a large increase of roll steer coefficient. Some positive sensitivity
(i.e. increasing the axis angle p, ), may be desirable to help to compensate for the otherwise general trend
towards oversteer with increasing load that occurs because of the tyre characteristics. This can help with
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primary understeer but does not help with final understeer or oversteer, for which the roll centre height is
the dominant factor.

It might appear in the above discussion that the axle axis angle should be measured relative to the
vehicle roll axis rather than to the horizontal. However, the vehicle does not in areal sense roll about its roll
axis. Rolling the body about the inclined roll axis implies a roll about a horizontal axis plus a yaw
movement which will affect front and rear suspensions equally, and so will have no net result on the
steering angle required.

6.13 Rigid Axles with Leaf Springs

In the case of longitudinal leaf springs, the roll steer coefficient depends on the inclination of the equivalent
link AB that describes the motion arc of the wheel centre, Figure 6.13.1. This equivalent link is directed
towards the unshackled end, is about three-quarters of the length of that end of the spring, and is roughly
parallel to it. When the body rolls, point A rises on the inner side and falls on the outer, thus tending to steer
the axle. Horizontal equivalent links give no steer, because both sides move forward equally. Having point A
higher than B gives roll oversteer for a rear axle (i.e. reduced slip angle tendency), B higher gives roll
understeer. For a front axle the effects are opposite. The roll steer coefficient is equal to the AB line
inclination angle expressed in radians, independent of the spring length or separation. On the other hand, the
spring length affects the influence of load variation on roll steer coefficient. Too high a coefficient, apart
from being bad for handling, also leads to harshness on rough roads because of the wheel path in bump, and
other problems. Early Hotchkiss axles, before 1930, were given a negative roll-steer coefficient because this
resulted in less sensitivity to road roughness. In the early 1930s a positive coefficient was first used (i.e. roll
oversteer was replaced by roll understeer) and a dramatic increase in directional stability was found.

Figure 6.13.1 Rigid axle with location by leaf springs, without steering.

6.14 Rigid Axles with Steering

Before the introduction of independent front suspension, all cars had a rigid front axle with steering. They
suffered from a variety of rather severe steering problems.

When the rigid axle with longitudinal leaf springs is used at the front, as on some trucks and off-road
vehicles even today, it is subject to all the effects described earlier, plus additional effects because of the
steering linkage. The critical steering link is always the one that connects the sprung and unsprung parts of
the steering. Figure 6.14.1 shows a typical arrangement with front steering and a rear spring shackle. Here
CD is the drag link, D is the connection to the wheel hub, and C is the connection to the Pitman arm on the
steering box, fixed to the sprung mass. When the axle moves, D has an ideal no-steer arc centred on the
ideal centre E. If E and C do not coincide, there will be steering errors. As early as the 1920s, it was
attempted to match the E and C positions for roll motions, but with disappointing results. The reason is that
the arc of D is different for each of roll, single-wheel bump, and heave, and different again with braking
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Figure 6.14.1 Rigid axle with leaf-spring location and steering.

because of axle wind-up. Also there are differences because of production variability of springs, and
variation between spring options. One improvement that is sometimes adopted is to use an unsprung
steering box, the sprung to unsprung connecting linkage being through a splined steering column.

In the early days, before the introduction of front independent suspension, the steering errors of rigid
front axles were a real problem. The usual way to deal with the problem was to use stiff springs to minimise
the axle movement. When independent suspension was introduced, as discussed in Chapter 1, it became
possible to use much softer front suspension springing having greater deflections without unacceptable
bump steer and roll steer problems, allowing implementation of the now better-understood relationship
between front and rear stiffnesses that give good ride qualities — with the front springs softer than the rear
to give the desired pitch and heave oscillation mode qualities and mode nodal positions.

References

Dixon, J.C. (2007) The Shock Absorber Handbook. Chichester: John Wiley & Sons, Ltd. ISBN 9780470510209.

"






7

Camber and Scrub

7.1 Introduction

Camber is angling of the wheel from the vertical, in front or rear view. Scrub is lateral movement of the
bottom point of the wheel. These are controlled by similar factors in the suspension geometry, and so are
dealt with together.

Wheel camber relative to the road surface affects the tyre lateral forces. The camber angle variation
with suspension bump depends on the position of the swing centre, introduced here. The swing centre also
affects the scrub rate and the roll centre position. For an independent suspension, the wheel camber
variation is described by the bump camber. For a complete independent axle, the coefficients can be
expressed as symmetrical and antisymmetrical properties of the axle. The main angles and coefficients are
as in Table 7.1.1. The units shown are the fundamental SI ones, as normally required for use in equations.
Actual values are, however, often quoted in other units, particularly degrees instead of radians, and inches
instead of metres in the USA. There are also several important bump scrub coefficients, leading to heave,
double bump and roll scrub coefficients.

7.2 Wheel Inclination and Camber

The symbol for tyre slip angle is «, but a different symbol, J, is used for steer angles, including bump steer.
There is no accepted symbol for a deliberate alteration of camber angle, since steering is not controlled in
that way. Hence, y is used here and elsewhere for all types of wheel camber. The distinction should be
borne in mind, however, between the different effects represented by 7y, especially those corresponding to
the distinction between 0 and «. There can be camber angles relative to the vehicle body, corresponding to
0, and camber angles relative to the road surface, corresponding to «. The body roll angle ¢ then
corresponds to the attitude angle 3.

A distinction must also be made between the inclination angle and the camber angle. For a given wheel,
these have the same magnitude but with a different sign convention. Inclination is positive for right-hand
rotation about the forward longitudinal axis, which is clockwise in rear view. Camber is positive with the
top of the wheel outward from the vehicle centreline, Figure 7.2.1. Here, the wheel inclination angle
will be represented by I" (Greek capital gamma), whereas the wheel camber angle will be denoted by y
(Greek lower case gamma).

The basic relationship between the inclination and camber angles for the two sides of the vehicle is
therefore simply that on the right-hand side they are the same, but on the left-hand side there is a change

Suspension Geometry and Computation J. C. Dixon
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Table 7.1.1 Camber and inclination angles and coefficients

1) 7o the static wheel camber angle (rad)

(2) yc  the wheel bump camber angle (rad)

(3) I'n  the axle inclination angle (rad)

4) ya the axle camber angle (rad)

(5) egc  the wheel bump camber coefficient (rad/m)

(6) earr the axle roll inclination coefficient (—, rad/rad, deg/deg),
(7) earc the axle roll camber coefficient (rad/rad)

®) I'p the path section inclination angle (rad).

of sign:

Te= (7.2.1)
I'n= -7y

There is a small static camber setting on a wheel, denoted yo. On a passenger car this is chosen to
minimise wear. On a racing car it is almost invariably negative. The wheel camber relative to the body
changes as the suspension moves in bump, Figure 7.2.2. The bump camber angle of a single wheel, ygc,
is the increase of camber angle, compared with the static value, due to suspension bump deflection zg.
For a linear model, the total camber angle at a given suspension bump is

Y =% + VBC (7.2.2)

Linearly, the bump camber angle is

YBC = €BCIZS (7.2.3)

(a)

(b)

r
R
7 -

Y Y
R

Figure 7.2.1 Wheel inclination angle and camber angle sign convention: (a) positive inclination, rear view only;
(b) positive camber, front or rear view.
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Figure 7.2.2 Suspension bump causes wheel camber angle change (rear view).

where the linear bump camber coefficient egc; depends on the suspension geometry, and would be
positive for positive-going camber on a rising wheel. The basic units of the bump camber coefficient are
rad/m, although commonly expressed as deg/dm (deg/inch in the USA). The bump camber coefficient is
usually negative for practical designs. More elaborately, including a second-order term,

7= Yo+ &Bc1Zs +BCazs + - (7.2.4)

where £pc» is the quadratic bump camber coefficient.

7.3 Axle Inclination and Camber

The axle line is the line joining the centres of the two wheels at the opposite ends of the axle. Here, the term
‘axle’ is applied broadly to include the two wheels of an independent suspension. The wheel inclination
angle and camber angle are measured from the perpendicular to the axle line. Axle roll angle (the roll angle
of the axle line) and road surface transverse-section angles also affect the camber of the wheel relative to
the road, but are accounted for separately, Figure 7.3.1. When there is suspension roll, the individual
wheels are in suspension bump and have camber changes relative to the body. For an independent
suspension, these wheel cambers can be accounted for separately, but it is also possible to work in terms of
the symmetrical and antisymmetrical axle values, the axle mean inclination and the axle mean camber,
respectively. In Figure 7.3.1(d) note that, with clockwise rotation positive, a negative path inclination
gives a positive wheel inclination relative to the road.

The axle mean inclination angle (nothing to do with the axle roll angle) is the mean of the inclination
angles of the two wheels of the axle:

Ia='(I'g+Ty) (7.3.1)

For an ideally symmetrical vehicle, this is zero. By substitution, it is equal to the semi-difference of the
wheel camber angles, arising from constructional imperfections or compliance camber:

'y = % ('R —=7L) =74 (73.2)

The antisymmetrical component, called the axle camber angle, is the semi-difference of the inclination
angles,

ya=1(R—TL) (73.3)
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EARI b5

Eart b5

Axle line

¢R.L ¢R_R

Axle line

Figure 7.3.1 Wheel/road camber caused by: (a) antisymmetrical suspension bump; (b) suspension roll camber;
(c) rigid axle roll on tyre vertical stiffness; (d) road section shape.

This is also equal to the mean of the camber angles:
7a =1 (R +7L) = m (7.3.4)

Then the individual right and left wheel inclination angles are

FR:FA+VA
I'L=1Tx—7a

(7.3.5)

Figure 7.3.2 Axle mean inclination I and axle camber 7, together give the individual wheel inclinations.
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The static camber angles are:
Tro =+ T'a0 + Va0

(7.3.6)
Yo = — I'a0 + Va0

The axle camber angle (Figure 7.3.2, the mean camber angle) is the intended design value, once being
normally positive but nowadays often negative, and usually negative on racing cars to give the best
cornering grip and to equalise the temperature distribution across the tread. The antisymmetrical
component, the difference of (static) camber angle values, arises on a passenger car only because of
production tolerances, although it is used deliberately on some racing cars, essentially those that operate
on circuits with turns in one direction only, for example US left-turn ‘oval’ tracks.

7.4 Linear Bump and Roll

In suspension roll, there are suspension bump deflections, +% T¢g on the right and — % T¢g on the left,
with wheel camber changes, altering the axle inclination and camber values, Figure 7.4.1.

The axle roll inclination angle is the mean inclination angle for the two wheels, relative to the road,
resulting from suspension roll. The axle roll inclination coefficient &gy is the rate of change of the mean
inclination of the two wheels with respect to suspension roll. It is dimensionless, being the ratio of an angle
over an angle, possibly expressed in units rad/rad or deg/deg. It is related to the bump camber coefficient
but also depends on the vehicle track. For small roll angles, linearly, the axle roll inclination angle
(mean of the two wheels) is

I ar1 = arIPs (7.4.1)
Considering a suspension roll angle ¢g, with corresponding suspension bumps :l:%Td)S relative to the

body, the single wheel camber and inclination angles due to suspension roll (axle roll accounted
separately), relative to the axle line, are

TR = + ¢s + ;Tdsenc (74.2)

L= — s —  Tpsenc (7.4.3)

I'r = + ¢S + %T(bssBC (744)

I'u= + ¢s + 3 Tsenc (7.4.5)
T 3T |

W; s

W Zg=+5T s

zg=—5T%s

b3

Figure 7.4.1 Individual wheel bump resulting from suspension roll.
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The axle mean inclination angle is

= s+, Tdgenc (7.4.6)

= (143 Tenc)bs

Hence the fundamental relationship between the linear axle roll inclination coefficient and the linear
wheel bump camber coefficient is

sart = 1+ Tepc (7.4.7)

Bump camber coefficients are usually made negative in order to reduce e4ri, to offset the effect of body
roll on wheel inclination, Figure 7.4.2. To be explicit, equation (7.4.7) may be inverted into the design
equation for the necessary bump camber for a desired roll inclination coefficient:

2
EBC — ? (SARI — 1) (748)

For example, the axle roll inclination coefficient would typically be 0.5 (rad/rad), requiring a bump camber
coefficient value of —1/T (rad/m), about —0.7 rad/m.

A rigid axle is not subject to suspension roll inclination or camber, but it does roll because suspension
roll leads to axle roll as a result of load transfer on the tyre vertical stiffness. Very loosely, then, a solid axle
might be said to have an axle roll camber coefficient, typically of about 0.12 (deg/deg) for a passenger car,
although this is not a real geometric effect. This axle roll on the tyres is also applicable to independent
suspensions. However, this is not normally accounted for as an axle inclination angle change. It is a roll of
the wheel-centres axle line:

b = kgagsds (7.4.9)

The complete inclination angles of the wheels relative to the path surface are therefore, Figure 7.4.3,
including path inclination angles, given by the path angle contact point to contact point, minus the local
path inclination angle, plus the axle roll angle plus the wheel inclination relative to the axle:

Twpp = (¢p+da+Tw)—(dp+1p) (7.4.10)

L s

Figure 7.4.2 Suspension roll causes wheel inclination.
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Figure 7.4.3 Wheel inclination angles relative to the local path surface.

where the path inclination angle I'p is measured relative to the path bank angle ¢p. To be specific, noting
that the path bank angle is eliminated, the left and right inclination angles relative to the path (road) are:

I'wr = ¢a+Tr—=Tpr = Pp+ (yro+¢s +1 Tencds) — 'er (7.4.11)

I'wi=¢a+TL—TpL=¢p+ (=70 +ds+; Tenchs) — I'pr (74.12)

7.5 Non-Linear Bump and Roll

Considering non-linear bump and roll suspension characteristics, and also asymmetrical characteristics,
the basic wheel camber angles are

2
YR = VRo + s + EBCIRZS + EBC2,RZS

) (7.5.1)
YL = VLo — Ps + €BC1LZs + EBC2LZS
Substituting zg = + %q&TS, the inclination angles are
I'k =+ yro + ¢s + 5 Tepcirds + %Tzé‘BCZ,Rd)é
752
IL=— 9y + ¢s + i Tepcinds — & T epcards (152)
The axle mean inclination angle is
I'y= % (I'r+1)
1 1 12 2 (753)
=1 (Yro = V10) + s +; T(epcir +epciL)ds +5 T (ec2r — £BC2,L)Ps
This may be expressed in terms of the axle roll inclination coefficients as
I'a = I'ao+ eariibs + earndg (7.5.4)

with the three terms

T'ao =3 (Yro — 710) (7.5.5)
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eart = 1+ T(epcir +&8ci L) (7.5.6)

earn = : T*(eBcar — £BC2L) (7.5.7)

The first of these, I oo, is the asymmetrical production tolerance error on static camber. The second, gy,
is the linear axle roll inclination coefficient, and depends on the sum of the wheel first-order bump camber
coefficients. The final term, eary, is the quadratic axle roll inclination coefficient, which therefore
depends on design asymmetry and production tolerance asymmetry giving different second-order bump
camber coefficients.

The axle camber is

ya=3IR—TL)

= Z (7ro +710) + 4 T(epcir — €Bc1L)ds + 1 T (eBC2R + epcaL) s (7.58)
This may be expressed as
A = Va0 T £arC1Ps + Earc2hs (7.5.9)
with the three terms
7a0 =5 (YRo + 710) (7.5.10)
earct = ;T(epcir — €BciL) (7.5.11)
earc2 = s T*(eBcar + &BC2 L) (7.5.12)

The first of these, )40, is the mean static camber of the two wheels, arising from production tolerances.
The second, earcy, is the linear axle roll camber coefficient, and depends on the production tolerance
difference of the wheel first-order bump camber coefficients. The final term, £src», is the quadratic axle
roll camber coefficient which depends on the sum of the wheel second-order bump camber coefficients.

An ideal symmetrical vehicle can therefore be expected to exhibit zero second-order axle roll
inclination and zero first-order axle roll camber.

7.6 The Swing Arm

At any given bump position, for a further infinitesimal increment of the suspension in bump, the wheel has
an instantaneous centre of rotation relative to the body, point E in Figure 7.6.1. In general kinematics, an
instantaneous centre of rotation is known as a ‘centro’. In vehicle dynamics, in this particular case it is
called the swing arm centre or just swing centre. For some suspensions (e.g. a swing axle) this centro is a
fixed point on the body, while for others (e.g. wishbones, struts) the point depends on the suspension
geometry in a more complex way, and moves relative to the body, so the coordinates of E depend on the
suspension bump position Zzg.

Point F is the notional wheel contact point with the ground. This is in the vertical transverse section of
the suspension, that is, in the section shown in Figure 7.6.1, in the longitudinal plane of the notionally
undistorted wheel, and at the level of the bottom point of the wheel. In cornering, the tyre has substantial
lateral distortion, but point F excludes this, being in the wheel centre plane. Point H is the foot of the
perpendicular from the swing centre E to the level of the bottom of the wheel. Length FE is called the swing
arm length, whereas the horizontal length FH is called the swing arm radius (SAE definitions).
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Figure 7.6.1 The swing arm FE and swing centre E. The swing centre is the instantaneous centre of rotation of the

wheel relative to the body, in suspension bump movement. The diagram shows a rear elevation of the left wheel (a front
elevation of the right wheel is the same).

For simplicity of notation here,
y=FH; z=HE

The swing arm angle is
z
fOsa = atan-—
y

and in some cases is negative, that is, the swing centre is sometimes below ground level. The tangent of 6
is called the bump scrub rate coefficient, discussed in detail later. The swing arm angle plays an important
partin vehicle handling characteristics, controlling, inter alia, the roll centre position. Its value is typically
about 8°, but it varies widely for different types of suspension, from —8° to 30°.

Considering the vehicle body to be fixed, when the wheel moves in suspension bump, the bottom
point of the wheel moves perpendicularly to the swing arm line EF. Therefore the bottom of the wheel
‘scrubs’ across the ground, unless point E is at ground level. With the vehicle moving longitudinally,
this scrub motion momentarily alters the tyre slip angle and cornering force. The ratio of the horizontal
velocity component at the contact patch, Vcy, to the vertical bump velocity for the bottom of the wheel
(the contact point) equals the bump scrub rate coefficient:

[/CH EH z
= = tanfep = — = = 7.6.1
EBScd = Vs an vsa FH ( )

Approximating the tangent, the bump scrub rate coefficient equals the swing arm angle when the latter
is expressed in radians, therefore being typically about 0.1 and varying from —0.1 to 0.4. A positive value
is a track increase in suspension bump.

Variation of the position of E in bump — and in particular the variation of Oga or £gscq — is important.
The variation of the swing arm may be analysed as in the following sections. By way of introduction,
in Figure 7.6.1 consider the swing arm in a coordinate system (y, z) fixed to the body but with origin at the
original wheel contact point. The initial swing arm centre is at (yo, zo). The linear variation of the swing
centre position relative to the body is

Yy =Yo+¢zs
’ (7.6.2)
z=2zo+C.Zg
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7.7 Bump Camber Coefficients

Referring again to Figure 7.6.1, the incremental change of single-wheel camber angle for an increment
of suspension bump is

1
dy = ——dzg
y

so the rate of change of camber with suspension bump is

dy -1
- (7.7.1)
dZs Yo + CyZS
In the special case of ¢, =0, with the swing centre moving only vertically,
Zs
Y= g — S 772
Y =70 Yo ( )
Otherwise, by integration of equation (7.7.1) (e.g. Spiegel, 1968, 14.59), from zg =0,
=0 — 1o (1+Cyzs) (7.7.3)
V Yo ¢y Ze Yo sl

The vertical variation of the swing centre position, coefficient c., plays no part in this. Expanding the
logarithm as a series,

log,(1+x) =x—1x" 4+ 17 —1x* 4 ...
gives
Zs zZs 2
=t o +%Cy(y—0> - (7.7.4)

which for ¢, =0 reduces to the earlier simplified case solution. Matching the polynomial expression for
camber, from equation (7.2.4), which was

\ 2
Y =70+ &Bc1Zs + EBCaZs

gives the bump camber coefficients in terms of the swing-arm centre initial position and its movement
coefficient cy:

1
EBCl — —— (775)
Yo
EBC2 = C—Vz (7.7.6)
2y;

7.8 Roll Camber Coefficients

Substitutingequations (7.7.5) and (7.7.6) into (7.5.6) onwards, the linear and quadratic roll inclination and roll
camber coefficients may be expressed in terms of the swing centre movement coefficients. The results are:

1 1
EARII = 1—%T(f + 7) (7.8.1)
Yor  YoL
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earn = 1 T° < SR _ Ol > (7.8.2)

2y(2)‘R Zy%,L

1 1
EARCI = —%T<———) (7.8.3)
Yor YoL
=172 SR | OL 7.8.4
EARC2 = g (2)%‘,11 + 2}%,]‘ ( )

7.9 Bump Scrub

The basic bump scrub polynomial, for the actual wheel lateral scrub value s, using the basic bump scrub
coefficients egge, 1S

§ = Yc—Yco = &Bsc1Zs + 835c22§ +¢9BSC3Zg + - (7.9.1)

with the initial scrub being zero at static ride height. The local bump scrub rate is the derivative of the
above:

ds
EBSed = - = &Bscl +2 epseazs + 3 epse3zs + - (79.2)
S

However, this is usually expressed in terms of the bump scrub rate coefficients £gscqo, £Bscd1> €BScd2s €C.:

2
€BScd = EBScd0 T €BScdl ZS T EBScd2Zg + (7.9.3)

The bump scrub rate coefficients are more convenient than the actual scrub polynomial coefficients when
the roll centre is being analysed, so it is easier to use the rate coefficients throughout, with, when required,

£BScl = EBScdo
1
£BSc2 = 5 €BScdl (7.9.4)

1
EBSc3 = 3 EBScd2

so the actual scrub then becomes
1 2 1 23
§ = EBScd0Zs 15 EBScd1 Z§ 3 EBScd2Zg T+ ¢+ (7.9.4)

The initial bump scrub rate coefficient, Figure 7.9.1(a), at static ride height, is

Z
£BScd0 = — (7.9.5)
Yo

Allowing for movement of the suspension and of the wheel itself, in terms of the body-fixed swing-centre
coordinates (y,z) Figure 7.9.1(b), the instantaneous bump scrub rate is

Z—Zs

€BScd =

Using
z=12zo+CZg

y=Yot+&zs
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Figure 7.9.1 Variation of the bump scrub coefficient with bump: (a) initial position; (b) in bump the point E rises by
z=c.zgs whilst the wheel rises by zg.

then

zo+ (c; — 1)zs
& == - 7.9.6
BScd Yo +CyZS ( )

Consider initially the simplified case with swing centre movement being vertical only (¢, = 0), giving

zo+ (c.— 1)z
EBScd = % (7.9.7)

The variation of the bump scrub variation coefficient is then

depsea 1

7.9.8
dzs Yo ( )

Therefore, when the suspension geometry is such that ¢, =1 it follows that the derivative of the bump
scrub variation is zero, and the bump scrub variation coefficient will remain constant in bump. Some
designers hold this to be a desirable condition, as it fixes the roll centre height.

More generally, including c,, by the standard derivative of the quotient expression in equation (7.9.7),

depsed _ (vo + ¢yzs)(c- — 1) = (zo+ (c: — 1)zg)cy
dzg (o + ¢yz5)*

_(e=Dyw—-¢2
(vo + cyzs)2

(7.9.9)

Setting ¢, =0, this agrees with the simpler earlier expression.
Consider the general bump scrub rate variation, from equation (7.9.3),

2
EBScd = EBScd0 T €BScd1ZS 1+ €BScd2Zg + - -

The implications of a linear variation, at least, will be explained further later. The coefficient values in the
polynomial may be found in terms of the swing centre variation, viz.:

20
EBScd0 = —

Yo
depsea _ (c: = D)yo — ¢y20
dzs (vo + Cst)2

E€BScdl ~
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At zg =0, then,

(e = 1)yo — ¢y20

7.9.10
Yo ( )

EBScdl =

Alternatively, use a curve fit to computer-solved point values.
The bump scrub variation, using equation (7.9.7), may be expressed as

ds z—zg zo+(c;—1)zg
— = = =
dzg B y Yo+ ¢yZs

= (z0+ (e: = 1)25) (o + ¢y75) !

— (204 (c: — 1)25)(%0) (1 * %ZS)I

The series expansion of (1+x)™" (e.g. Spiegel, 1968, equation 20.8) is

1
——=l-x+ X=X+
1+x
o)
ds 1 Cy o\’
—=(—J(zo+(c;—Dzs)[1- 2z +(—‘v) 227~--)
dzs <YO>(O( )S)( Yo o \y) S
1 CyZ
“Go (o=
Yo 0
giving

ds z c;— 1)yg—¢yz
_:_04_((“)))#)254_
dzs  yo Yo

Integrating, with zero scrub at zero suspension bump,

Z0 (C: - 1))’0 - CvZO) 2
s=|—)zs -+ (7' Ze+ oo
()’0) 2% S

Comparing this with the actual scrub polynomial (7.9.5) in terms of the scrub rate coefficients, which was

1 2,1 3
§ = £BScd0ZS T 5 EBScd1Zs T 3EBScd2Z5 Tt

then
20
EBScd0 = —
Yo
(c: — l)yO*CyZO (7.9.1])
EBScdl =5

i

agreeing with equation (7.9.11). Further terms are easily obtained.
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7.10 Double-Bump Scrub

In symmetrical double-wheel bump, equivalent to a negative suspension heave, for independent
suspension there is track change due to scrub and camber change. For a symmetrical axle the axle
inclination is unchanged, with the introduction of symmetrical negative camber (on an independent axle).
Positive scrub causes a track increase. There may be asymmetries due to production tolerance errors,
but these are generally small compared with the bump steer effects.

7.11 Roll Scrub

Geometrically, roll of the suspension will change the axle track due to bump scrub. The total track change,
to second order, is

AT =T(cos pg—1) + <8BSCO,R (% chS) + % £BScl R <% Td)s)2) + <8BSC(LL (—% Td’s) + % £BSelL <_% T¢S) 2)
=T(— d)é) + (€BScOR — €Bsco,L) (% T(j)s) + 2(eBsc1r + €Bsci1 L) (% Td)s) 2
= {% T(aBsco,R - SBSCO,L) }(155 + {f% T+ (é T2> (SBSCLR +SBSC]7L> }(bé
(7.11.1)

For an ideal symmetrical vehicle the first-order roll scrub is therefore zero, the linear wheel camber angles
compensating each other. There is a second-order term, partially due to the cosine effect on wheel spacing
and partially due to the second-order wheel bump scrub. For an ideal symmetrical vehicle,

AT = =1 T{1 = | Topsa |3 (7.112)
For an asymmetrical vehicle,

1
ERScl = ; T(£BscoR — €BSco,L)

7.11.3
ersca = =3 T + | T*(&Bsc1 R +&Bsc1 L) ( )

7.12 Rigid Axles

The nature of non-independent live axles effectively precludes substantial misalignment of the wheels,
which remain effectively parallel, with zero geometric axle inclination and camber. The one exception to
this is in some racing classes, now mainly historical, where the axles were ‘tweaked’ in a hydraulic press to
give a small amount of static negative camber, and possibly some toe angle.

De Dion axles, where the wheels are rigidly connected to each other but the drive differential is attached
to the sprung mass, may have static negative camber and toe angle, but this is constant, not varying as for
independent suspension.
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Roll Centres

8.1 Introduction

This chapter deals with the roll centre for independent suspension. Rigid axles are covered in Chapter 13.
Actually, the idea of the roll centre was introduced early in the days of vehicle dynamics, when all cars
had arigid axle at both front and rear. The roll axis is a straight line through the front and rear roll centres.
With the introduction of independent suspension, these concepts were carried over despite some confusing
complications, such as track change in bump and roll, and continued to be the basis of dynamic cornering
analysis. Over the years since then, the roll centre concept has been subject to some criticism, but clarified
and improved.

Really, for a thorough understanding, it is necessary to appreciate that the idea of a single roll centre for
a suspension is only an approximation. There are actually several different types of roll centre, and these
definitions are not exactly equivalent. Also, different authors have used different definitions for the roll
centre of any particular type, none of which are necessarily wrong — each may be good if used correctly.
Third, the roll centre, in general, however defined, is not necessarily a single point, it moves around when
there is suspension bump or roll. Finally, the roll centre as defined may not even be a point, but may be a
range of positions.

Originally, the roll centre idea was, in practice, essential for manual computation of vehicle cornering
dynamics. With the introduction of computers, it became entirely practical to make the necessary
calculations without reference to a roll centre at all. However, the idea of a roll centre remains a valuable
tool forhuman understanding of the suspension characteristics, in the design process, and as abasis for simple
calculations or as a summary of the suspension characteristics as found by computer-produced results.

In the simple model of suspension, there is a single roll centre, fulfilling several functions. In reality,
there are several distinct functions, with distinct roll centres:

(1) the geometric roll centre (GRC);
(2) the kinematic roll centre (KRC);
(3) the force roll centre (FRC);

(4) the moment roll centre (MRC).

Historically, for the most part, as a useful practical approximation, these have all been treated as one fixed
point of the suspension. For a thorough understanding, it is necessary to appreciate the differences.
The GRC is a property of the suspension geometry, a point found by specified geometric methods.
The KRC is the point about which the body rolls relative to the axle. This then controls the consequent
lateral position of the sprung centre of mass, affecting the total load transfer.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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The FRC is a point at which the suspension links exert a lateral force on the sprung mass. This is
represented, in essence, by the FRC height, which affects the roll angle of the body and the means of lateral
load transfer through the suspension links.

The MRC is the point about which moments are taken in dynamic analysis of the body. For a true
dynamic analysis, the front and rear MRCs should generally be on the longitudinal principal axis of inertia.

The traditional method of working, for steady-state analysis at least, was that the various roll centres on
an axle were all deemed to be at one point. This point was found by solving the GRC position, which was
then used, with some justification, as the FRC and the KRC, and even the MRC, allowing practical solution
of vehicle dynamics problems.

The assumptions behind the various roll centres are somewhat different. There is an analogy here with
the lever, for which the mechanical advantage equals the velocity ratio only for zero friction. The usual
analysis of the FRC neglects joint friction and stiffness.

In this book, the emphasis is on geometric properties of roads and suspensions, so this is not the place
for a thorough analysis of all roll centre issues. Here, only the GRC will be investigated in detail. The FRC
and KRC will be reviewed, however, to show their relationship to the GRC. For a more detailed
explanation of these, see, for example, Dixon (1996).

8.2 The Swing Arm

Figure 8.2.1 shows the basic swing arm constructions, in the two dimensions of the transverse vertical plane
of the suspension, for the main types of independent suspension. Point F is the wheel-to-road contact point,
considering the wheel and tyre to be undistorted (i.e. in the centre plane of the wheel). Tyre distortion effects
such as overturning moment are dealt with separately. Point E is the swing centre. For an unrolled
symmetrical vehicle, the swing arms for the two sides intersect at the centre, this intersection being the GRC
for the symmetrical unrolled position (i.e. at small lateral accelerations only). In practice, for a simple
analysis, the roll centre is assumed not to move relative to the body. The GRC found by this means
(geometric analysis as in Figure 8.2.1) is then considered to indicate the KRC and FRC positions. In fact,
these are not really the same, and the GRC moves relative to the body, as discussed later in this chapter.

Briefly, the swing arm constructions are as follows. Figure 8.2.1(a) shows the double-wishbone sus-
pension (double A-arm), where the motion of one end of a link relative to the other end must be per-
pendicular to the link line between centres. This neglects rubber bush compliance. Therefore, the motion of
the wheel relative to the body, in bump, at each link connection, must be perpendicular to the link. Therefore
the link lines are radii from the instantaneous centre of rotation, which is found by intersecting the link lines,
giving the swing centre E. For the symmetrical case, the roll centre is always in the centre plane, soitis at the
intersection of the swing arm with the centreline.

For the strut of Figure 8.2.1(b), the top slider is like an infinitely long wishbone perpendicular to the
slider. For the pure straight slider suspension of Figure 8.2.1(c), the bottom point of the wheel obviously
moves parallel to the slider, so the swing centre is at infinity, with the swing arm perpendicular to the slider
direction.

Figure 8.2.1(d) shows a driven swing axle, where the wheel is located by the driveshaft, with a universal
joint at the side of the final drive unit. This joint acts as the swing centre, giving point E. This is unusual in
that the swing centre is on the same side of the vehicle as the wheel. The initial roll centre follows at R,
which is notable for being very high. Figure 8.2.1(e) shows a lateral swinging arm with longitudinal axis.
This is known as low-pivot swing arm, producing a desired lower roll centre.

Figures 8.2.1(f,g,h) show various forms of trailing arm. The simplest case is (f) in which the pivot axis is
perpendicular to the vehicle centre plane, and therefore parallel to the ground. The motion of the wheel
relative to the body is a linear parallel action, so the swing centre is at infinity, and the initial roll centre
is at ground level. In case (g), the trailing arm axis is inclined in rear view only. The body-fixed wheel
motion is parallel but inclined, so the swing centre is again at infinity, but now with an inclined swing arm.
Finally, for the general-case trailing arm of case (h), the arm axis is not perpendicular to the vehicle
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Figure 8.2.1 Swing arm constructions for unrolled symmetrical vehicles of various independent suspensions:
(a) double wishbones; (b) strut; (c) slider; (d) swing axle; (e) swing arm; (f) trailing arm; (g) trailing arm with
inclination; (h) trailing arm with inclination and plan-view axis rotation. F is the (undistorted) contact patch centre
point, E is the swing centre, R is the roll centre (Dixon, 1991).

centreline in plan view. The projected axis therefore intersects the vertical transverse plane of the
suspension at a non-infinite swing arm length, at swing centre E.

Over the last century of vehicle suspension analysis, many versions of the above swing arm and roll
centre diagrams have been published. The fact that they have often differed shows that even basic
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suspension analysis is by no means trivial. Figure 8.2.1, which first appeared in Dixon (1991), seems to
have stood the test of time. Admittedly, however, this is not exactly correct. It is a two-dimensional
approximation to a problem which should really be solved in three dimensions. That said, the
approximation is quite a good one.

8.3 The Kinematic Roll Centre

The very name ‘roll centre’ suggests a kinematic concept, and many authors do introduce the roll centre as
a point about which the vehicle body rolls. Unfortunately, this is not really true, and the more one thinks
about it the more confusing it can become, considering lateral velocity of the vehicle in cornering and track
changes of the axle.

The essential point of the KRC is that it could be defined as follows (temporary definition):

The kinematic roll centre is the point, in the transverse vertical plane of the suspension, about which
the body rolls in cornering, relative to the axle.

Here, the term ‘axle’ is used in a broad sense to mean the pair of wheels, even if independently sprung. For
independent suspension, the axle track (tread) can change, so the axle lateral position is deemed to be the
mean lateral position of the bottom of the two wheels, considering their undistorted wheel planes.
For a rigid axle, track change is not an issue.

The simplest case is arigid axle using a sliding block lateral location. This is not used on passenger cars,
but has been used in racing, particularly as a modification to lower the roll centre of some designs of rigid
rear-axle linkage. There is a vertical channel on the axle, carrying a sliding block. The centre of the block
carries a pin about which the body may rotate in roll, Figure 8.3.1. Alternatively, the channel may be on the
body, and the block and pin on the axle. There is a difference when the body is rolled, because heave of the
body perpendicular to the road may or may not cause axle sway (lateral motion) according to the system
chosen. The channel on the axle is usually preferred. Independent suspensions have a similar problem,
according to the design.

Here, it is clear that the body can pivot (i.e. roll) about the pin. Equally apparent is that the block and pin
can, and generally will, move up or down in cornering. Typically the suspension springs are rising rate,
soinroll the body tends torise, an effect called spring jacking. If the body rolls and rises, then the complete
motion relative to the axle is a rotation about a point offset to one side, Figure 8.3.2.

For simplicity, neglect the tyre deflections. Coordinate Yp is positive to the right. For a suspension roll
angle ¢¢ and a body heave zg, the mean of the two wheel suspension droops, the lateral offset of the
effective pivot point is

ZB
Yp = 8.3.1
"~ tan g ( )

///|/1 4

Ao vz iz 2

Figure 8.3.1 Sliding block lateral location of the body on a rigid axle. The body pivots on a pin in the block, which
slides in the channel attached to the axle.
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Figure 8.3.2 Relative rotation point of the body relative to the axle when the body rises as it rolls, front view.

This is evidently, in a sense, the roll centre of the body relative to the axle, but the lateral offset is governed
by the properties of the springs, not the suspension links.

In practical application, the lateral offset of the pivot point, as seen above, is not considered as part of the
roll centre action. The application of the KRC is in calculating the lateral offset of the centre of mass

relative to the axle, a dimension which governs the additional load transfer. In practice therefore, a
different definition is applied:

Atasuspension roll angle ¢g, with resulting centre of mass offset Yy relative to the axle mean wheel
position, the KRC is in the vehicle centre plane and the axle vertical transverse plane, at the KRC
height Hxrc, where

Yem
tan ¢g
in which Hcy is the initial height of the body centre of mass.

Hewm — Hyre = (8.3.2)

As actually used, the KRC position is derived from the GRC position, and the centre of mass offset,
positive to the right, is calculated as

Yem = (Hewm — Hire)tan dg (8.3.3)
as in Figure 8.3.3.
This offset of the centre of mass offsets the body weight force mpg, causing a supplementary roll moment

MYCM = mBgYCM (834)

Hen §

H KRC
I, 7, 7

Figure 8.3.3 Lateral displacement of the centre of mass due to roll angle about the KRC at height Hxgrc.
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This is usually much smaller than the load transfer moment directly due to lateral forces but may still
be significant, depending on the suspension roll stiffness and consequent roll angle. A high roll centre
at both ends of the vehicle therefore reduces the roll angle and the total load transfer. However, in
contrast, a property of the force roll centre is that a higher roll centre at one axle increases the load
transfer on that axle and reduces it on the other axle, this being an important factor in limit handling
adjustment. These conflicting effects of the KRC and FRC have caused some confusion, and even
controversy.

The common practice is to take the KRC height to be the same as the GRC height, in the vehicle
coordinates, neglecting any GRC lateral offset for the reasons stated above, with the GRC found by
geometric analysis of the suspension linkage. In the case of a simple rigid axle, as in Figure 8.3.1,
combined with the defining principle of Figure 8.3.3, this is reasonable. This is also fairly clear for other
rigid axle location systems, such as the Panhard rod.

In the case of independent suspension, the justification is less clear-cut, and reference must be made
to other texts (e.g. Dixon, 1996) for a fuller discussion. The problem is the complication introduced by
the track change of an independent suspension in roll. The swing arm defines the motion of each wheel
relative to the body, so with some approximations it is reasonable to take the intersection point of the swing
arms (i.e. the GRC), as the putative KRC, and then neglect any a lateral offset (i.e. again to take the height
of the KRC as being the same as the height of the GRC, in vehicle coordinates).

8.4 The Force Roll Centre

The height of the FRC controls two important factors:

(1) the suspension link lateral load transfer;
(2) the suspension link jacking force.

Figure 8.4.1(a) shows the tyre normal (Z) and lateral (Y) force components on the two wheels of an
independent-type axle. This is after removal of forces that support and accelerate the unsprung mass, so
it is for the forces supporting and accelerating the sprung mass (body) only. The coordinate system used
here is the standard ISO one, with X forward, Y to the left, and Z upwards. The tyre forces are shown in
vehicle coordinates. The tyre forces are usually expressed in road normal and lateral coordinates. The road
surface is in general rotated by the roll angle, and also by the two road camber angles. The vehicle-axis
components shown are easily derived. Figure 8.4.1(b) shows these forces resolved instead along (F5) and
perpendicular (F) to the swing arms. The F'; parts, perpendicular to the swing arms, must be supported
by the springs (and dampers in unsteady state). The F, parts act through the links, and, as may be seen in
the figure, will exert no moment about the intersection point of the swing arm lines. This conclusion may
be drawn, for a double-wishbone suspension for example, on the basis that the swing arm is the
intersection of the lines of the links, and the links carry link-aligned forces only, that is, that the joints
at the ends of the links are free of stiffness moments (e.g. rubber bushes) and free of friction moments
(e.g. rotating metal sleeve bushes). This is a standard principle of the analysis of pin-jointed structures.
These are evidently engineering approximations, which could be improved upon in a more detailed
analysis, including bush friction or stiffness moments. The lateral position of the GRC is B, positive to
the left.

Figure 8.4.1(c) shows the link force alone resolved back into normal and lateral components. The link
jacking force, which is the total vertical force in the links, relieves the springs of load, causing jacking of
the body. This link jacking force is

FLJ = F2?R sin BSA,R - FQ_L sin HSA,L (841)
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Figure8.4.1 Various representations of the body-applied forces in independent suspension links, rear view, in vehicle
coordinates, in left-hand cornering: (a) normal and lateral components of tyre forces at the contact patch; (b) resolved in
swing arm coordinates; (c) the link forces alone resolved back into normal and lateral components; (d) the single
resultant at the GRC, and components Fy; (link jacking force) and Fy (lateral force) at the FRC.

The lateral transfer of normal force through the links (colloquially, the link load transfer) is half of the
difference between the upwardly-directed link normal forces:

Fir = % (FZ,R sin HSA,R + Fz,]_ sin OSA,L) (8.4.2)
The link-only upward normal forces for each side are then

Fpr = Fu+Fur

1 (8.4.3)
FrL =5Fu—Fur

Figure 8.4.1(d) shows the resultant of the link forces, combined vectorially at their intersection point
(nominally the GRC). Considering the line of action of the resultant, where this crosses the vehicle
centreline the resultant can be resolved into vertical (jacking) and lateral components, Fyy and Fy,
respectively. This point on the centreline is the one usually accepted as the FRC. The angle of the total
resultant link force to the horizontal is

Fiy
= at 4.4
al an<FY> (8 )
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so the height of the FRC is

F
Hpre = Hgre — B (F—LJ) (8.4.5)
Y

In Figure 8.4.1(d), B is positive, so Hgrc is less than Hgrc.
The roll moment exerted by the lateral link force about a central axis at ground level is

Mpy1. = FyHgre = FioT (8.4.6)
so the FRC height is
My FinT
Hire = —F = 8.4.7
FRC Fy Fy ( )

The load transfer factor fir is defined as

= = 8.4.8
fir = Fin Mo 8.4
S0
H, = T
FRC = fLT (8.4.9)
Fur = furFy

This is sufficient not only to illustrate the close relationship between the FRC and the GRC, but also to
illustrate that they are not identical because of the necessary assumptions and approximations, and the
lateral offset.

The actual distribution of forces left and right depends on the tyre characteristics, so only the
approximate position of the FRC can be calculated on the basis of the links alone, the height difference
from the GRC depending on the inclination of the link force resultant.

The anti-roll coefficient Jag is defined as

Hggrc
Hp

Jar = (8.4.10)

and is usually expressed as a percentage, Jarpe =Jar X 100%.

8.5 The Geometric Roll Centre

The GRC has already been mentioned several times. Its basic definition is simply as follows:

The geometric roll centre is a point in the transverse vertical plane of the suspension, being the
intersection point of the two swing arm lines, one from each side.

Therefore, once the geometric constructions for the swing arms are understood, the GRC follows easily, as
in Figure 8.4.1(b).

Difficulties arise with the above simple definition when the swing arms are parallel. This divides into
two cases. The first case is as for simple unrolled trailing arms — the swing arms may be overlaid in the
ground surface, with the intersection point anywhere along the swing arm lines. The second case arises,
for example with simple trailing arms in the rolled position, when the swing arms are parallel and do not
intersect at any point. This may occur with or without infinitely long swing arms, which is not important
in this context.



Roll Centres 165

; %
FRC -%//’7
Fi-t | —GRC, KRC E

7777777 i

Figure 8.5.1 Parallel swing arms on a simple rolled trailing-arm suspension.

In the first case, the problem is solved simply by extending the definition to say that when the swing arms
overlap, in the road surface, the intersection point is to be taken as on the vehicle centreline, in the road
surface.

When the swing arms are parallel and non-overlapping, as occurs for simple rolled trailing arms or for
rolled equal parallel wishbones, regardless of swing arm length, the GRC is at infinity, either to the left or
right. An infinitesimal change of one swing arm angle, say due to a slight asymmetry, can shift it from one
side to the other. If they are even slightly away from parallel, then the GRC exists in the usual way.
Projecting an infinite intersection point back into the vehicle centreline does not solve the problem of the
KRC, because the vertical position of the infinite GRC, in vehicle coordinates, may be anywhere within the
range of the swing arm heights. In this specific case, then, the GRC is really of no help.

The case of parallel swing arms can occur for most suspension types, at one double bump position for
any given roll angle. It is exemplified by the simple parallel trailing arm suspension in the rolled position,
asin Figure 8.5.1. The KRC is on the centreline at ground level. The FRC is found as the point in the centre
plane about which the link forces exert zero moment. The link forces are simply parallel, and the outer
wheel will generate more cornering force, in general, so the FRC tends to be up towards the swing arm of
the outer wheel, according to the relative magnitude of the forces.

8.6 Symmetrical Double Bump

The simplest case of GRC movement is for a symmetrical vehicle in symmetrical double bump,
Figure 8.6.1. With a symmetrical axle bump z, each suspension bump is z. The local bump scrub
rate coefficients are equal, by symmetry, for the linear case

€BScd = €BScd0 T €BScd1ZA
The GRC height, in the body-fixed coordinates, is
H=zp +%T£Bst (8.6.1)
Substituting for the bump scrub coefficient, linear in this case, then

H = zp 4 T(eBscdo + eBscai Za) (8.6.2)
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Figure 8.6.1 A symmetrical vehicle shown in vehicle-fixed coordinates: (a) static; (b) with symmetrical double
bump.
with

Hy = Tegscao (8.6.3)

Typically, the linear bump scrub variation coefficient egg.q; is negative, but the GRC rises relative to the
body, remaining on the centreline. The vertical motion of the GRC, relative to the body, in relation to the
suspension double bump, by differentiating equation (8.6.2), is

dH
EH1,DB = H =1 +%Tﬁgscd1 (864)
A

This value occurs frequently in GRC equations. Relative to the road, the GRC height is
Z=H-—zp (8.6.5)
SO
Z= %T(SBSch + €Bscd1 ZA) (8.6.6)

With a negative linear bump scrub rate coefficient egscq;, the GRC falls relative to the road. The vertical
motion of the GRC, relative to the road, in response to suspension double bump, is

dz
— = Tepseal (8.6.7)

EZ1DB =
’ dZA

Evidently, the relationship between the variation relative to the body and that relative to the road is
en1pB = 1+ éz1pB (8.6.8)
For example, with 7= 1.40 m, ¢ggcq; = —0.6 m~ !, z, = 50 mm, relative to the body the GRC goes up by

H—H, ZA(I + %TSBScdl)

= 50(140.5 x 1.4 x (—0.6)) = 50(1 — 0.42) = 29 mm

On the other hand, relative to the ground the GRC goes up by
Z—Zy = za (% TEBScdl)
=50(0.5 x 1.4 x (—0.6)) = 50(—0.42) = —21 mm

that is, it goes down by 21 mm relative to the road.
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If non-linear bump scrub variation is included, then
H =25+ T(eBscao + eBscaiZa + eBSed273) (8.6.9)
Z = T(eBscdo + €Bscd1Za + EBSed2Z3 ) (8.6.10)

and the relationship between the two variation rates is preserved. The height H can also be expressed as

H = ] Tepscao + <1 + Tenscal ) za + 1 TepsearZy
(8.6.11)
= Hy + &z1pBZA + <% TSBScd2>Zi,

8.7 Linear Single Bump

Figure 8.7.1 shows the geometry for movement of the GRC relative to the body when there is single-wheel
bump, here taken to be on the left-hand side. Here, for simplicity, the small track variation is neglected.
Vehicle bump scrub asymmetry is included. The GRC moves upwards or downwards, and to one side,
generally towards the rising wheel. In body coordinates, the GRC is at (B, H), with B positive to the left. It
is easy to write two simultaneous equations for H:

H= (% T+ B) €BScd R

(8.7.1)
H= (% T— B) &Bscd L 2L
These must be solved for B and H, in the usual way. Eliminating H by subtraction,
0 = T(epscar —&BscaL) + B(epscar + &Bsear) — 2L (8.7.2)

Using the notation subscript L + R to denote the addition of terms, L — R for subtraction (and later L x R
for multiplication), i.e.
€BScd,L +R = T+ EBScdR+L = €BScd,L 1 €BScd,R
€BScd,L — R = — €BScd,R — L = €BScd,L — EBScd,R (8.7.3)
€BScd,L x R = T €BScd,R x L = €BScd,L X €BScd R

4
GRC B K
H
93.-\.1.
H
ZL
- 1
- ?T
[— =I= >
+T-B ST+B

Figure 8.7.1 An asymmetrical vehicle with single (left) bump, rear view, in vehicle coordinates.
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equation (8.7.2) is more compactly expressed as
0 = Tepscar 1L+ BeBscar +L— 2L
so the lateral GRC position becomes (with L — R, not R — L, and a corresponding sign change)

1
7L+ 5 Tepscd L -R

EBScd,R +L (8’7'4)
Eliminating B from equations (8.7.1), by appropriate multiplication and addition of equations,
Hepscal +R = 5 T2€BScd RxL + ZLEBSed R
SO
H— Tepscd RxL + ZLEBScd R (8.7.5)

EBScd,R +L
From equation (8.7.4) with z; =0, the initial GRC lateral offset due to asymmetry at zero bump is

By = % T<8BScd(),L—R) (8.7.6)

EBScdO,R + L

In the symmetrical-vehicle case, this reduces to zero. From equation (8.7.5), the initial height of the GRC,
in body-fixed coordinates, is

Hy = T(M) (8.7.7)
€BScdO,R + L

In the symmetrical case, this reduces to
Hy = %TEBSch (symmetrical vehicle) (8.7.8)

To go into further detail, the general form of bump scrub rate egg.q must be replaced by actual values, or
by more detailed equations. Considering the case of linear variation of bump scrub rate, with bump on the
left wheel only, we may write

€BScd,L = €BScdo,L T €BScdl,LZL (8.7.9)

€BScd,R = €BScdO,R

Using equation 8.7.4, the GRC lateral position is then

P +5 T(eBscdo LR + &Bsed1 L2L) (87.10)
(eBScdOR +L + BScal,LZL)

The variation of this with left bump z; may be found by the standard derivative of a quotient:

du dv
d (u(x)) _ Vax ~"dx

dx v2

v(x)
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This can be applied to equation 8.7.10, then setting z; = 0 to obtain the value at static ride height, which is
the GRC lateral position variation in single bump:

dB
€BI,SB = (a) (8.7.11)
2.=0

The result is

1+Te 3
P + TeBscdo,L€BScd1 L (8.7.12)

EBScdOR + L

In the symmetrical-vehicle case this reduces to

1

2£Bscdo

£B1.SB = +% Tepsca; (symmetrical vehicle) (8.7.13)

Applying the same form of analysis to the GRC vertical position variation in left bump, substituting
equation (8.7.9) into (8.7.5) gives

_ Tepscao,R(eBscdo,L + €BScdl LZL) + ZLEBScdO,R

H (8.7.14)

€BScdOR + L + €BScdl,LZL

Taking the derivative of a quotient and then setting z. =0 gives the GRC vertical position variation in
single bump:

dH
EHISB = | 7 (8.7.15)
dZL Z=0

with the value

_ 8BSch,R(8BScd0,R +L + TeBscdoREBScd1 L)

EH1,SB = 5 (8.7.16)
€BScdOR +L
In the symmetrical-vehicle case, this reduces to
emse = 5 (14 Tepsear) (symmetrical vehicle) (8.7.17)

which is just half of the symmetrical double-bump effect.

8.8 Asymmetrical Double Bump

Figure 8.8.1 shows the geometry for movement of the GRC relative to the body when there is asymmetrical
double-wheel bump. The small track variation is neglected. Vehicle bump scrub asymmetry is included.
In body coordinates, the GRC is at (B,H). Again, it is easy to write two simultaneous equations for H,
the GRC height in vehicle-fixed coordinates:

H=zx+ (%T+B> €BScd,R
(8.8.1)
H=z + (%T —B) €BScd,L
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Figure 8.8.1 A vehicle with asymmetrical double bump, rear view, in vehicle coordinates.

Eliminating H by subtraction,

1
0=zr —zL +5 TepscaR L + Bépscar+L

SO

(zL—zr) + ; Tepscd L - R

B= (8.8.2)
EBScd,R +L
To obtain H, eliminate B by multiplication and addition of equations (8.8.1),
Hepsed L +R = ZREBScd L + ZLEBScdR 5 T 28BScd RxL
SO
H— (2R€BScd L + ZLEBScdR) + Te€BScd RxL (8.8.3)

€BScd,R+L

To use equation (8.8.2) or (8.8.3) in specific cases, it is necessary to substitute specific values, or equations,
for the bump scrub rate coefficients (e.g. constant, linear variation, or other polynomials). The variation
coefficients for B and H with the left and right bumps may be derived, but are not particularly useful.
However, the above results are very general, and can be used to obtain results for specific cases of
combined heave and roll, expressed as equivalent bumps.

In the case of a symmetrical vehicle, equation (8.8.2) for the GRC lateral position becomes

(zL—2R) <1 +3 T8B5cdl)

2epsedo + (2L + 2R )€Bscdl

(symmetrical vehicle) (8.8.4)

Equation (8.8.3) for the GRC height does not simplify usefully, so it is better to evaluate the bump scrub
rates at the two bump positions and use equation (8.8.3) as it is.
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8.9 Roll of a Symmetrical Vehicle

Figure 8.9.1 shows the geometry for movement of the GRC relative to the body when the vehicle is rolled
with no heave, just a positive suspension roll angle. Positive suspension roll is clockwise in the figure,
looking along the positive longitudinal axis, so the corresponding suspension bumps are

R =+ Tdg; zL=—Tds=—2x (8.9.1)

For convenience, it is easier to work initially in terms of zg and —zy rather than the actual roll angle
expressions, in other words to analyse an antisymmetrical double bump.

The small track variation is neglected. In body coordinates, the GRC is at (B,H). As usual, it is easy to
write two simultaneous equations for H, the GRC height in vehicle-fixed coordinates:

H=+zp+ (% T +B) €BScd R

(8.9.2)
H=-zr+ (% T- B) €BScd,L
Eliminating H by subtraction,
0 = 2zg +; Tepscar-L + Bépscar + L
$0
B —22g +; Tescar—Rr (8.93)

€BScd,R +L

To obtain H, eliminate B by multiplication and addition of equations (8.9.2),

1
Heépsed L+ R = ZREBScd L — ZREBScdR T 5 1 2€BScd L x R

GRC B
H
H
Y
| 0 —
ZL=“‘£,'T¢'5 SAL
X
/’ %T P ]?T >
- > >
+T-B 3T+B

Figure 8.9.1 A vehicle with rolled suspension, rear view, in vehicle coordinates, shown with positive B.
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SO

H=

ZREBScd,L-R T T€BScd RxL (8.9.4)
EBScd,R+L

This completes the basic solution of B and H. To progress the analysis, consider linear bump scrub
variation for a symmetrical vehicle:

€BScd = €BScd0 T EBScd1 ZS
£BScd,R = €BScd0 T €BScd1ZR (8.9.5)
EBScd,L = €BScd0 — €BScdlZR

with further relationships

€BScdR+L = 2€BScdo
€BScdR-L = 2€BScd1ZR (8.9.6)

_ 2 2 2
€BScd,RxL = €Bscd0 — €BScdl R

Using these in equation (8.9.3) gives

B —22g 4 5 T(—2¢Bscai 2r)
2¢pscdo

SO

1+ ! Tepse
B (14 3 Tepscar) . (8.9.7)
EBScd0

and, in terms of the suspension roll angle ¢q,

(1+ ! Tepsear)
B, (8.9.8)
BScdo

By differentiation, the lateral GRC movement coefficient in roll is

1+ ! Tepsear
€B1 Roll = — T(;iC (8.9.9)
BScdo

If desired, this can be made zero by designing the suspension such that

€BScdl = — (8.9.10)

el

With positive initial roll centre height, for egs.q; > —2/7 (e.g. zero), the GRC moves towards the outside of
the curve. For ¢ggcq; < —2/T, the GRC moves towards the inside of the curve, left in Figure 8.9.1.

The GRC height, from equation (8.9.4), by substitution of the linear symmetrical bump scrub rates,
becomes

2 2 2
—2zr26Bscd1 ZR T T (8gsedo — €Bscd1 ZR)

H =
2£BScd0

(8.9.11)
&
= 5 Tepseao — Boedl (1 +3 TsBScd1>Z§
£€BScd0
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so, in terms of the suspension roll angle ¢g,

€BScdl
H= % TSBSch_i T27C (1 +% TSBScdl)(l’)é (8912)
€BScd0

The linear bump scrub variation, therefore, does not produce a linear factor in the GRC height, but a
quadratic effect:

2
H = Hy + ex1 ron®s + eH2,Roll P
1
Hy =3 Tepscdo

eH1Roll = 0 (8.9.13)

EBScdl

e rol = — T° (1 +3 TSBScdl)

€BScdo

with the quadratic coefficient having units m/rad?. For égsedao positive, and égscq; positive or
large negative, less than —2/T, then &y, ron 1S negative, but for egscq; in the range —2/T to zero,
then eys ron is positive. The magnitude is sensitive to the initial roll centre height, or égscqo, the value
of which may be very small and of either sign, according to details of the suspension design and
operation.

In conjunction with the linear lateral movement, the quadratic height change gives a parabolic trajectory
to the GRC in roll. Both movements can be eliminated by setting ¢gs.q; = —2/7. From equations (8.9.9)
and (8.9.13),

€H2 Roll = % TeBscd1 €B1,Roll (8.9.14)
The equation of the parabola is
H = Hy + cpB? (8.9.15)
with
€H2 Roll €BScd0€BScd!l
cp = =— 8.9.16
E31 Roll 14 Tepscar ( )
For example values, T=1.4 m, égscq0 =0.14, egscq; = —0.70 m €B1.Roll = —2.55m/rad, epz ron =

1.495 m/rad?, ¢p=0.1922m ",

8.10 Linear Symmetrical Vehicle Summary

For a symmetrical vehicle, the geometric suspension equations for linear bump scrub variation may be
summarised as in Table 8.10.1.

Example values are: T=1.46m, eggcqo=0.06, epsca; =—0.70 m~ !, Hy=0.044m, ep1,sp=1.82,
en1,sp =0.2445, &7 pgp = —0.511, ey pp = 0.489, eg1 ron = —5.95 m/rad, egp ron = 3.04 m/rad>.
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Table 8.10.1 Summary of equations for symmetrical vehicle GRC

€BScd = €BScd0 1+ €BScd1 ZSB (8.10.1)
Hy =} Tegscao (8.10.2)
By =0 (8.10.3)
€BI,SB = m + 3 Tepsear (8.10.4)
em s = 5 (14 3 Tepscar) (8.10.5)
eg1p = 0 (8.10.6)
€210 = 3 Tepscal (8.10.7)
emipp = 1+ 1 Tepscar (8.10.8)
14 1Te
B1Roll = *%T% (8.10.9)
eH1Roll = 0 (8.10.10)
EH2,Roll = 7}‘T2 <%) (1 + %TSBSch) (8.10.11)

8.11 Roll of an Asymmetrical Vehicle

Figure 8.11.1 shows the geometry for movement of the GRC relative to the body when the asymmetrical-
suspension-geometry vehicle is rolled with no heave. The small track variation is neglected. Vehicle bump
scrub asymmetry is now included, although this does not show in the diagram. The simultaneous equations
for B and H in general form are as in the previous section, and the solution is the same:

1
—2zr +; Tépscd LR

B = (8.11.1)
EBScd,R+L
A
GRC B
H
H
Y
I -
1
ZL— ‘Z'Tqbs SA,I
y
7z < %T > | ]7'1" —_—
- ——— I - :
i |

T+B

t
=

Figure 8.11.1 An asymmetrical suspension geometry vehicle with rolled suspension, rear view, in vehicle
coordinates, but still with zero heave, the same diagram as Figure 8.9.1.
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 _ CREBScdLR + Tepscd,RxL

(8.11.2)
EBScd,R+L

Now consider asymmetrical linear bump scrub variation (still with equal and opposite bumps, z; = —zg):

€BScdR = €BScdO,R T €BScdl RZR

(8.11.3)
EBScd,L. = €BScd0,L — €BScdl,LZR
with further relationships
€BScd,R+L = €BScd0,R+L T+ €BScdl R-LZR
(8.11.4)
€BScd,R—L = €BScd0,R—L T €BScdl R+LZR
Inserting the linear variations into equation (8.10.1),
—2zg — 1 Tepscaor—L — + Tepscdl RALZR
B= 2 - 2 (8.11.5)

€BScdO,R+L 1 €BScdl R-LZR

Taking the derivative of the quotient, and substituting zg = 0 gives the GRC lateral position variation in
roll as a function of the associated suspension bump deflection:
_2£BScd(),R+L + % T(SBScd().R+L3BScd],R+L - EBScd()tR—LgBScdltR—L)

£B1,Roll,ZB = 2 (8.11.6)
BScdO,R+L

This coefficient has units m/m, that is, no dimensions. To obtain this in terms of the actual roll angle, in
radians,

€B1Roll = 5 €81 Roll.ZB (8.11.7)

This has units m/rad, lateral motion of the GRC per radian of suspension roll angle.

8.12 Road Coordinates

The preceding analysis has been performed in the vehicle-body-fixed coordinates (B, H) because this is
much clearer than a suspension analysis in Earth-fixed road coordinates (Y, Z). However, for application,
it is desired to know the values in the Earth-fixed system, so a transformation of coordinates must be
applied, as seen in Figure 8.12.1. The vehicle body position is defined by a heave Zg (a negative suspension
bump) followed by a suspension roll ¢ 5. The order of this sequence is significant; if the movement is
defined in the other order then the transformation equations are altered. Previous to the displacement, the
two axis systems (B, H) and (Y, Z) are coincident.
A general point P is at vehicle-fixed (B, H) and at Earth-fixed (Y, Z). By simple geometry,

Y = Bcos ¢g — H sin ¢pg

. (8.12.1)
Z = Bsin¢g + Hcosdg+7Zg

This may be arranged as two simultaneous equations in B and H, and solved by the usual methods, giving

B =Y cos qu—i-(Z—ZB)si'n obg (8.12.2)

H = (Z — Zg)cos ¢pg — Y sin ¢pg
The vehicle also heaves on the tyres because of changing total normal force and because of variation of
the effective tyre normal stiffness with lateral force, and the axle rolls on the tyres because of the lateral
transfer of normal force in cornering combined with the tyre vertical compliance. An additional
transformation, similar to the above, may be applied for this.
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(a) z4 17 (b)

Figure 8.12.1 Vehicle-fixed (B, H) and Earth-fixed (Y, Z) coordinates: (a) with heave before roll; (b) with roll before
heave.

When roll is applied before heave, the equations are

Y = —(H + Zgg)sin ¢pg + B cos g

) (8.12.3)
Z = (H + Zgy)cos ¢pg + Bssin ¢pg
with

B =Y cos ¢pg + Zsin ¢g

. (8.12.4)
H = —Ysin¢g + Zcos pg —Zpg

Figure 8.12.2 shows the rolled vehicle, with swing arm angles in vehicle coordinates s 1. and Oga .
Relative to the road, the swing arm angles are

OsarL = OsaL — b (8.12.5)

Osarr = Osar + @5

By this means, the GRC may be solved directly in road coordinates, if desired.

SAR,L

e P N 2
g7 b ! GSAR.R ¢5 QSA,R
saL P

Figure 8.12.2 Rolled vehicle showing swing arm angles s, in vehicle coordinates and fsar in road coordinates.
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The bump scrub rate coefficients may be expressed easily in road coordinates for small angles:

£BScdR,R = €BScdR T Ps (8.12.6)

£BScdR,L = €BScdL — Pg

Using this method, all vehicles become asymmetrical.

8.13 GRC and Latac

For steady-state handling analysis, the roll centre height may be represented approximately by

H = Hy + kmAy + kA3,

(8.13.1)
B = By + kp1Ay + kp,A%

In a linear model, the suspension double bump (axle bump z,) and suspension roll angle ¢4 are related
to the lateral acceleration (latac) by

za = kzaAy

8.13.2
bs = kgsAy ( )

In simple roll, then, the GRC movements become
H = Hy+ em1 ronkgsAy + SHZ,RollkésAzy (8.13.3)

B = &g rokgsAy + SBZ,ROIIkésA%{

The linear effect on GRC height is usually quite small, being the result of vehicle asymmetries, so kg is
small. The coefficient kyy, is the quadratic roll-centre height variation coefficient, and again tends to be
small with a value possibly around plus or minus 0.001 m/(m s_z)2 (0.1m/ gz). In roll, kg, may be around
—0.10 s> [m/(m s~ )].

8.14 Experimental Roll Centres

Various methods have been suggested at times for the experimental measurement of roll-centre position,
none of which are really very satisfactory. One method is the observation of body displacement with
application of a lateral force at the centre of mass, for example using a laterally slanted ramp, but this is
definitely not suitable. The large lateral displacement at the tyres is a problem which may be eliminated by
using solid wheels, but there will still be inappropriate lateral displacements within the suspension
compliances. A correct method of finding the SAE-defined roll centre would be to apply lateral forces
at various heights. With the lateral force applied at the height of the roll axis, there will be a lateral
displacement of the body because of compliances, and a vertical displacement because of the jacking
force, but no rotation. In this sense, the FRC is directly analogous to a shear centre, which would probably
be a better name for it, although the term ‘roll centre’ is no doubt too entrenched by use to change now.

As in the case of a shear centre, there is a more direct method of measurement. If the displacement is
observed when a moment is applied, the shear centre will be the centre of rotation, i.e. the point of zero
displacement. The most convenient way to apply a moment is by a couple, for example by a joist through
the doors, with a load first on one end then on the other. This does involve a vertical load which is
acceptable if the vehicle is to be tested in a loaded condition. Otherwise it is necessary to arrange for a
vertical upward force to be applied as half of the couple, say by a hydraulic jack or a weight over a pulley.
The actual deflection has been analysed by double-exposure photographs, but in the interests of accuracy it
is much better to take measurements of the displacement of specific points by dial gauges. If these points
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are not in the vertical transverse plane of the wheel centres, then the data must be used to find the roll axis,
and this then used to find the roll-axis position at each suspension.

This method is still subject to serious errors and problems. Under real cornering conditions there are
actually large forces in the suspension links, causing geometric changes through bush distortions. These
are largely absent from the test. Any small inappropriate lateral displacement of the body will give a large
error in the measured roll-centre height. The applied couple will change the load on the tyres, giving an
additional rotation of the complete chassis, including the wheels, about a point at ground level roughly
midway between the tyres. The result is a false lateral motion of the body at roll centre height. This must be
guarded against by using solid disc wheels, although this exacerbates the problem of allowing scrub,
because when finding the roll centre for large angular displacements, there will be a consequent track
change. This must be permitted, perhaps with air bearing pads, but without allowing any inappropriate
lateral motion of the body, which is critical. It is difficult to say how the body should be located.

In summary, it is fairly easy to observe the displacement of a vehicle when it is subject to loads or
couples, but it is very much more difficult to obtain results that have a worthwhile roll centre interpretation,
especially for large latacs. Probably the only satisfactory experimental method is to use an instrumented
vehicle in real cornering to find the displacements and actual load transfer for each axle, for example with
strain gauges on the links, and to deduce the KRC from the lateral displacements, and the net link load
transfer and FRC height from the forces.
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Compliance Steer

9.1 Introduction

This chapter discusses compliance steer effects in general terms. Specific designs of suspension are
covered in later chapters.

The wheel position, for a given suspension bump, is determined initially by the basic geometry of the
suspension, but this is modified by the forces and moments acting on the wheel, which cause compliance
deflections. These are generally small, but never zero. They may be a problem, with inadequate design, or
may be kept small or put to good effect by good design. For example, sometimes rear compliance oversteer
is deliberately introduced. Under tractive or braking forces, there may also be compliant changes of front
caster angle. These will augment the caster change relative to the ground caused by vehicle pitch due to
longitudinal load transfer.

In general, the compliance may be in the suspension or in the steering linkage. The main effects are
changes of wheel angles, known as compliance steer angles (8¢) and compliance camber angles (yc). The
fundamental units are radians, and these are the units normally used in equations and computer programs,
but the usual form for human consumption is degrees.

For the design of ordinary passenger vehicles, handling must be seen in the context of the ride—handling
compromise. To provide comfort and to avoid noise, vibration and harshness, it is necessary to have
significant compliance of wheel motion, not just vertically but also in longitudinal and lateral directions,
achieved by tyre compliance, by the springs and by the extensive use of rubber bushes. Unfortunately,
suspension link compliance has often led to considerable angular compliance of the wheels, resulting in
unfavourable or unpredictable handling because of compliance camber deflection and especially because
of compliance steer deflection. Through better understanding, this conflict is now largely resolvable, by
allowing the wheel relatively generous movement in translation, but little angular movement in steer or
camber for the forces and moments that it actually experiences. The method is to bring the shear centre of
an independent suspension, in plan view, close to the centre of tyre contact, or for a rigid axle near to the
mid-point between the tyres. Tyre forces then have little moment about the shear centre, and so, although
the wheel still has angular compliance, there is little angular response, so that steer angle changes are
controlled. Careful location of the shear centre can even be used to introduce favourable small deflections.
A significant characteristic of compliance steer is that, unlike roll steer, it occurs almost immediately.

On low-friction surfaces such as ice or snow, the tyre characteristics are different, and there is a low limit
to lateral acceleration, so load transfer distribution becomes less significant, and roll steer and side-force
steer become more critical in determining limit handling, especially at the rear.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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9.2 Wheel Forces and Moments

The basic coordinate system for the wheel is shown in Figures 9.2.1 and 9.2.2. At the base of the wheel, at

the notional centre of the undistorted contact p.

atch, there are three forces and three moments acting on the

wheel, Figures 9.2.3 and 9.2.4. More accurately, one should say that there is one resultant wrench, which is
a force with a coaxial moment, which may usefully be considered in terms of these six components.
The origin of the wheel coordinate system is the intersection of the ground plane, the undistorted wheel
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Figure 9.2.2 The SAE coordinate system for a wheel (SAE, 1976).
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Figure 9.2.3 The total wrench at the base of a wheel, exerted by the ground on the wheel, analysed as six
force-moment components, ISO system.
plane and the transverse vertical plane through the wheel centre. The axis directions are:

(1) the X axis, forward in the ground and wheel planes;
(2) the Y axis, in the ground and transverse vertical planes;
(3) the Z axis, perpendicular to the ground in the transverse plane.

Note that the Z axis is not in the wheel plane, unless the wheel has zero inclination.

7| Camber angle

Overturning
moment

\0 My

Longitudinal
force

L. Lateral force
Self-aligning C

torque M,

Normal
force

7’ (S.AE)

Figure 9.2.4 The total wrench at the base of a wheel, exerted by the ground on the wheel, analysed as six
force-moment components, SAE system.
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9.3 Compliance Angles

Apart from the ride-improving properties of the suspension compliance, the most important compliance
effects are those directly affecting the handling qualities, specifically the compliance steer angle and the
compliance camber angle or compliance inclination angle, Figure 9.3.1. Considering these angles, for a
given design of suspension location system with its rubber bushes, reveals the critical aspects of the
suspension in this regard. The steer angles are measured from a line parallel to the vehicle centreline, with
a total steer angle which is simply the sum of the geometric and compliance angles:

8 =68g+0c (931)

Similarly, the inclination or camber angles may be measured from the perpendicular to the road surface,
with

7 =7 +7c (9:3.2)
Also, for pitch angle (caster angle) of the wheel hub,
0 = 0g+ Oc (9.3.3)

The pitch angle variation changes the caster angle of the wheel upright. With positive rotation as right-
hand about the Y-axis, the static caster angle would be negative, so this sign convention is rarely applied.
Figure 9.3.1(c) shows positive values of 6 and 6, caster being simply taken as positive when the steering
axis leans backwards.. The wheel hub pitch angle is not necessarily identical to the caster angle, the former
possibly being defined as zero in the static position, although the difference will be constant at the static
caster minus static hub pitch angle.

@ ° (b) Y © 0
0. % £ Side ),
C 71 view 6(

Rear
view

Plan v

view @

/ 7 7 7 4

Figure 9.3.1 Compliance steer and compliance inclination angles for a single wheel: (a) steer angle in plan view; (b)
inclination angle in rear view; (c) hub pitch angle in side view.

9.4 Independent Suspension Compliance

The total force and moment wrench at each independent wheel contact patch is considered as three force
and three moment components: Fx, Fy, Fz, Mx, My, Mz. Also there are six possible displacement
responses of the wheel: X, Y, Z, 7, 6, . Each displacement response may be affected by each of the six
stimuli, so, considering even the simplest linear model, there will be 36 coefficients in total. This can be
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combined into a matrix equation
X=CF (9.4.1)
where X is the six-component linear and angular compliance displacement column vector
X = (Xc, Ye, Ze,ve, Oc,8¢)" (9.4.2)

in which the suffix T means transpose (in this case, just change the row to a column); F is the six-
component force-moment column vector,

F = (Fx, Fy, Fz, Mx, My, Mz)" (9.4.3)

and C is the compliance matrix. This matrix equation has no special properties, it is just a simple and
concise way of writing the combined linear equations. In more detail

Xc Cxrx Cxpy Cxrz Cxmx Cxmy Cxwmz Fx
Yc Cyrx Cyry Cyrz Cymx Cymy Cywmz Fy
Zc _ Czrx Czry Czrz Czmx Czmy Czwmz y Fz (9.4.4)
Ve Crx CGry Cr Cux Cmy Cwmz Mx
Oc Corx Cory Corz Comx Comy Comz My
oc Csrx Cory GCsrz Gsmx  Comy  Csmz Mz

This is simply, then, a concise way of representing six equations of the form

Xc = CxpxFx + CxpyFy + CxrzFz + CxmxMx + CxmyMy + CxmzMz (9.4.5)

The units of the compliance matrix are in four equal 3 x 3 sections:

. _(m/N m/Nm=N"
units (C) = (rad/N rad/Nm )

Fortunately, in view of the large number of coefficients at each wheel, many of the effects are
insignificant in practice. This occurs if the stimulus is small, if the compliance is small, or if the resulting
deflection is unimportant. Expressed in partial derivatives, the more interesting and important com-
pliances of the matrix are as follows:

[ oX ox

oFx My
oY

- -
0z oz Y4

- OFy OF, My

Cc= o o o (9.4.6)

 OFy 0oF; oMx

00 00

oFx My

5 05 o5 06 06 08

OFx OFy OF; 0Mx 0My oMy
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Here it is apparent that the rows are the various coefficients for the effects on one displacement
(e.g. the sixth row is for changes to the wheel steer angle &), and columns are the coefficients for the
effects of a given force or moment (e.g. the second column is for the effects of Fy, the lateral force).
The values in this matrix are normally positive, but this is contingent upon the sign conventions
adopted. A matrix of derivatives such as this is known mathematically as a Jacobean matrix (with
emphasis on the ‘oh’).

9.5 Discussion of Matrix

To understand the terms of the Jacobean sensitivity matrix, it is necessary to define clearly the conditions
of the partial derivatives. Basically, the body is held fixed, and the wheel is initially held at its normal
position by a vertical force, which would normally support the vehicle. The wheel is locked to the hub
in rotation. Additional forces and moments are then applied and the displacements are measured. The
meaning and significance of the results are not always completely obvious, and the results require
interpretation. For example, as tested with a wheel and tyre, the lateral displacement response to a lateral
force shows a large value due to the tyre lateral compliance. Normally, this would be treated separately,
so the tyre compliance would be excluded from the compliance matrix, leaving only the structural
compliance. Similarly, the vertical displacement response to vertical force is dominated by the suspension
spring compliance and tyre vertical compliance, which would be deducted to leave the structural
compliance only. In the case of formula racing cars with long wishbones, this may be important.

In some applications of the compliance matrix, the compliances of the spring, etc., may be included.
This is just a matter of methodology, but it is important to be clear what the matrix compliances do include
in any particular case.

In the first row, X displacements, sensitivity to Fx is deliberately introduced by appropriate rubber
bushes. This is to prevent a significant harshness on hitting bumps. Bias-ply tyres (diagonal-ply) are
more compliant, but with the widespread use of radial-ply tyres which are much less compliant in the
longitudinal direction it is really essential to make appropriate use of this suspension compliance in
modern road vehicles. Exceptions are, naturally, off-road vehicles which generally use diagonal-ply tyres
because these have sidewalls of greater strength. Sensitivity of X to My is of interest because it relates
sensitivity to wheel contact-patch height forces to the sensitivity to axle-height forces. These moments are
produced by variations in rolling resistance and by traction or braking forces produced through the action
of a driveshaft.

The second row has an entry for 0Y/0Fy, the lateral compliance. This is generally not important, not
least because the tyre itself exhibits a larger lateral compliance, which would normally be eliminated from
an experimental measure, but it is easy to see physically how the residual lateral structural compliance at
the contact patch arises from linear lateral compliance of two wishbones.

In the third row, 0Z/0FYy is the change of vertical position with lateral force. This may appear to be the
suspension link jacking effect, but usually this would be separated out and dealt with as an independent
item, not classified as compliance. Link jacking can occur even with ideally-rigid links. The residual term
is small and due to link compliance only, allowing a small vertical motion of the wheel with the body fixed.
The next entry in the third row is 0Z/0F, the change of vertical position with vertical force. This is the
main suspension action, and again this would normally be separated out and dealt with by other means.
The basic compliance here is the large ride compliance, the sum of the spring (wheel rate) and tyre normal
compliances:

1 1
CR=—+— 9.5.1
* 7 Ks - Kzr ( )
The matrix compliance coefficient here, C gz, would normally apply to any additional deflection, above

that due to the spring and tyre action, due to distortion of the links and deflection of rubber bushes.
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The third term shown in the third row is 0Z/0M~, which is the effect of pitching moment on vertical
position. This is mentioned because such an effect can arise in the case of trailing arms, but is then
analogous to link jacking, and, similarly, would be dealt with separately.

In the fourth row, the effects on inclination/camber angle, significant effects are shown for Fy, Fz and
M. The way in which these can alter a camber angle through compliance of the links is easy to imagine.

The fifth row, for changes of pitch angle, has two entries. The pitch angle of the wheel is not a handling
or ride issue, because the wheel rotates anyway, but the pitch angle should be considered to be the angle of
the wheel hub. This can deflect in pitch compliance due to pitch moments or longitudinal forces from
traction or braking, changing the steering caster angle.

The sixth row, that for steer angle effects, which is most critical, is full, although in practice some of
these terms are small. The first term, 08/0F, is the important steer effect of tractive and braking forces.
The second term, 06/0F, is the important steer effect of lateral forces. The third term, 08/0Fy, is the steer
effect of vertical forces. The fourth term, 06/0MY, is the steer effect of the tyre overturning moment,
usually small. The fifth term, 06/0My, is the steer effect of pitch moment. The final term, 06/0Mz, is the
steer effect of wheel yaw moments (e.g. due to mechanical or pneumatic trail combined with lateral
forces), and may be significant.

9.6 Independent-Suspension Summary

The main structural compliance effect in ride is:
(1) Cxgx (m/N), the longitudinal compliance to longitudinal force.

For formula racing cars, the structural vertical compliance to vertical force may be as great as the basic
spring compliance, because of the use of stiff suspensions but long thin links and body compliance at the
connection points.

The main structural compliance effects in handling are:

(1) Cspy (deg/N), the lateral force compliance steer coefficient;

(2) Csmz (deg/Nm), the aligning moment compliance steer coefficient;

(3) C, Fy (deg/N), the lateral force compliance camber coefficient;

(4) C,mx (deg/Nm), the overturning moment compliance camber coefficient.

The last of these is usually neglected, and often the last two or three. The actual compliance steer angle is
typically expressed as

O0c = Ory + Omz = Cs pyFy + CsvmzMz, (9.6.1)

and the compliance inclination angle is
7e = Ty + mx = CorvFy 4 € mxMx (9.6.2)

In the case of compliance camber, some symbol other than y might be desirable, but there is no commonly
accepted symbol. The use of y is acceptable provided that the corresponding preference for 6 rather than «
is clearly understood in the case of compliance steer.

The total effect of compliance in the linear cornering regime may be summarised by the compliance
steer gradient ksc, which has SI units rad/m.s~2, but is usually expressed in deg/g. Because the lateral
force effective in creating distortions is the sprung mass force rather than the total lateral force, the
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compliance gradients are as follows:

ksc = ksyy +ksmz
ks ry = mptCs py r + mp:Cs py (9.6.3)

ks mz = mpit;Cs mz,r + Mpet:Cs Mz

where my is the body mass (sprung mass) and ¢ is the tyre pneumatic trail. Similar equations can
be written for the camber. Typical values of compliance understeer gradient are 1.0 deg/g at the front and
0.2 deg/g at the rear.

9.7 Hub Centre Forces

For a driven wheel, or with inboard brakes, the driveshaft transmits a moment M, which, for constant
wheel angular speed, generates a longitudinal force

Mp

Fy =
X RL

(9.7.1)

where Ry is the loaded radius of the wheel. As shown in Figure 9.7.1, this combination of force and
moment is equivalent to a force only, at wheel centre height. Itis also equivalent to a force Fx at the contact
patch plus a pitching moment My there, where My = Mp. Comparing Figure 9.7.1(a) and (c), the moment
has been moved. This is permissible, as the application point, or axis, of a moment has no effect on the
influence of the moment on a rigid body. The configuration of Figure 9.7.1(c) can then be used with the
compliance matrix to obtain the compliance deflections for the hub-height force. This illustrates the
principle, although, of course, in a practical case there may be complications; for example, with an
inclined driveshaft there will be an additional moment M.

It is also of interest to obtain the coefficients for the force Fx applied directly at the wheel centre. The
compliance steer angle is

d¢ = CspxFx + CsmyFxRL (9.7.2)
so the compliance steer coefficient for the wheel-centre-height force is
Cspxwen = Cspx + CsmyRL (9.7.3)

This may be elaborated to include other effects such as an inclined driveshaft. Similar methods may be
applied to other coefficients.

(a) (b) (c)
F, F, My

Figure 9.7.1 Equivalent force systems for tractive force generated by driveshaft torque.
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9.8 Steering

The situation at the front of the vehicle is complicated by the steering. The outside wheel in cornering is
subject to an inward lateral force, putting the lower wishbone in compression and the upper one in a
smaller tension. Because of the bushes this results in a wheel camber. There will be no resultant lateral
displacement of the wheel at some height between the wishbones, depending on the bush stiffnesses. If the
steering arm is at this height then there will be no steering effect from this cause, whether the steering tie
rod is in front or behind the kingpin axis.

In plan view the lateral force acts behind the kingpin because of pneumatic and caster trail. For front
or rear tie rods, the steering compliance then results in a side-force understeer. This is the most significant
of all side-force steer effects because of the considerable torsional compliance of the steering column.
The consequence of this relatively high compliance is that for side force the shear centre (the point where
a force will not cause a steer deflection) is a rather small distance behind the kingpin axis. For tractive
forces the shear centre is again rather closely aligned with the kingpin axis, so in practice steering not far
removed from centre-point steering is used. For front drive, careful tuning of the system is required to
prevent power steer, although the situation is complicated by the dominant influence of the driveshaft
torque component.

9.9 Rigid Axles

A complete rigid axle may be analysed for compliance steer effects in the same way as an independent
suspension. The axis origin is taken at the centre of the axle at ground level, Figure 9.9.1. The
characteristics naturally depend very much on the particular type of link location system adopted, or
the use of leaf springs. Just as for independent suspensions, there has been considerable development of
link systems and carefully controlled compliance to achieve desired handling characteristics.

(a) (b)

s AX — N —
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Figure 9.9.1 Rigid axle coordinates, with forces and moments, for compliance analysis.
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9.10 Experimental Measurements

Various rigs have been built for the measurement of suspension compliance, typically combined with
measurement of geometric bump steer and bump camber. Basically, such a rig comprises a rigid frame
replacement of the vehicle body, to which the suspension arms are connected in the usual way. Hydraulic
actuators apply forces or moments in the desired way, with deflection measurements made by dial gauges
or some automated system. By this means the linear coefficients can be determined, along with non-linear
effects and the limits of linearity. Usually, the suspension spring is replaced by arigid link, and the wheel is
replaced by a rigid disc or structure, to isolate the structural compliances. The wheel compliance,
excluding the tyre, can be tested separately, and is relatively small.
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Pitch Geometry

10.1 Introduction

Vehicle longitudinal dynamics dictate certain aspects of suspension geometry. As a result of aerodynamic
pitching moment, hill climbing, braking or accelerating, or steady-state cornering with an attitude angle,
there is a longitudinal load transfer, that is, longitudinal transfer of tyre vertical force. It is considered
positive when the rear reactions are increased. The change of vertical force in the suspension results in
ride-height changes at the front and rear suspensions. The suspension bump deflections have geometric
effects on the wheels, such as bump camber and bump steer angle changes, and also affect the caster angles
significantly. As in the case of lateral load transfer, the longitudinal load transfer may be achieved partly
through the springs and partly through the links. Transfer of some of the load through the links rather than
through the springs is called ‘anti-dive’ at the front and ‘anti-rise’ at the rear in the case of braking, and
‘anti-lift’ at the front and ‘anti-squat’ at the rear in the case of traction. Having a roll centre above ground
could correspondingly be described as ‘anti-roll’. These all depend on the geometry of the suspension
links.

10.2 Acceleration and Braking

The total longitudinal load transfer moment reacted by the tyres at a longitudinal acceleration A,, for a
total vehicle mass m and centre-of-mass height H, is

Mrxt = mHA

Similar additional effects occur for a longitudinally sloping road. The basic load transfer moment on the
suspension is due to the sprung mass:

Mrxs = msHsAx

However, the unsprung mass contributes to the longitudinal load transfer, and part of this acts through the
sprung mass, having some effect on the pitch angle, again depending on details of the suspension
geometry. Therefore the second equation above is not strictly correct. Also, of course, the pitch angle
resulting from tyre deflections depends on the entire load transfer.

The pitch stiffness (as Nm/rad) of the tyres along the wheelbase, with the vehicle pitching about its
centre of mass, is

kTp = 2612th + 2b2Ktr

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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where K, is the tyre vertical stiffness (one wheel) and @ and b are the partial wheelbases, and two wheels per
axle are assumed. This gives an unsprung-mass pitch angle (i.e. the pitch angle of the line through the
wheel centres in side view) of

_ I’I/lsHsAx

= e

The suspension pitch stiffness (Nm/rad) is
ksp = 2021{5{ + 2b2KSr

where K is the effective suspension vertical stiffness at one wheel, giving a suspension pitch angle, with
no anti-dive or anti-rise effect, of

_ msHgAy

b = e

The complete body pitch angle, for steady acceleration, is the total pitch angle on the tyres and suspension:
0 = 6y + 6s

with an associated pitch angle gradient df/dAx around 4 deg/g (longitudinal).

10.3 Anti-Dive

Really the whole suspension is a geometric problem to be solved in three dimensions, as in later chapters,
but for human understanding it is useful to consider approximate two-dimensional simplifications. The
principle of anti-dive for a twin-wishbone front suspension is shown in two-dimensional side view in
Figure 10.3.1. Each wishbone has a geometric plane through three points (e.g. two on the body plus one at
the centre of the ball joint on the wheel upright). There is a line where the plane of each wishbone intersects
the longitudinal plane of the wheel, these lines being shown in the figure. These two lines are arranged to
converge to a point E, possibly at infinity. The line AE at angle 6, (gf for ground front) joins this point to
the base of the wheel. The suspension geometry is characterised primarily by the angle 6, and by the pitch
arm length Lg or the horizontal pitch arm radius L p. With the usual approximation of zero stiffness and
friction moment about the pivot axis, the suspension links can exert no moment about the point E. When,
resulting from brake action, a horizontal force is applied by the road to the wheel at the bottom, this can be
resolved into components along and perpendicular to the line AE. The component F'; along AE is reacted
by the links. The component F, perpendicular to AE must be reacted by the springs: at the front a

Front Rear

Figure 10.3.1 Anti-dive and anti-squat geometry (only braking forces shown).



Pitch Geometry 191

component of the braking force acts downwards on the wheel, extending the spring and so opposing the
usual compression of the front spring in braking. This is anti-dive.

Figure 10.3.1 assumes that the brakes are outboard. If they are inboard then the torque transferred by the
driveshafts must be added to the brake force. The result is that the brake force is effectively applied at the
wheel centre height, so it is necessary to arrange for appropriate inclination of line CE instead. Similar
principles can be applied to the rear suspension, but in this case the force centre must be in front of the
wheel, to discourage the usual extension of the rear springs in braking or compression in acceleration.

The pitch properties of the suspension therefore depend on the position of the point E, and so on the
suspension geometry.

The notation for angles in Figure 10.3.1 is that subscripts ¢ and g mean from the centre and ground
respectively, and subscripts f and r mean front and rear as usual. The anti coefficients will be
denoted by J (in practice often expressed as J x 100%). For example, JA; is the anti-lift coefficient.
Table 10.3.1 summarises the parameters, showing which angle is relevant to which coefficient. As an
aide-mémoire to distinguish between rise and lift, it is convenient to recall that rise is at the rear.

Inboard brakes are relatively rare, being used on a few high-performance vehicles and some racing cars.
Outboard drive is very unusual, achieved on some specialist vehicles by hydraulic or electrical drive, in
which case there is no driveshaft torque, analogous to conventional brakes.

In braking, the total deceleration depends on the total longitudinal tyre force from the two ends of the
vehicle, but the horizontal longitudinal suspension force on each end depends on the braking proportion at
that end. Accurate calculation of the anti-dive coefficient requires consideration of the proportion of brake
force at the front, the sprung and unsprung masses, and the sprung centre-of-mass height. The analysis is
usually simplified by neglecting the inertial effect of the unsprung mass, as in the following. As an
example, consider the braking force

F = Fy+F, = pmAg + (1 — p)mAg
where p is the proportion of braking at the front, which may be acceleration-dependent, for example if
there is a rear pressure limiter, and A is a braking deceleration, positive to the rear. The resulting vehicle

deceleration is

_Ff+Fr
m

Ap

The total longitudinal transfer of vertical tyre force to the rear is

WIABH
L

Frx =—

Table 10.3.1 Anti-dive/rise/lift/squat coefficients and angles

Action Symbol Direction End Relevant angle

Inboard brake/drive Outboard brake/drive
Anti-dive JAD braking front O.¢ (o
Anti-rise JAR braking rear Or (-
Anti-lift JaL driving front O.¢ [

Anti-squat Jas driving rear 0, (-
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The vertical force exerted by the ground on the front axle is therefore

mABH
L

Fyg = Wy —Frx = W +

The forces on the suspension from the body have no moment about E, so taking moments about E for the
front wheel shows the effective front spring force (sum of two wheels) to be approximately

mAgH  pmAgy
L X

Fs = Wr — Wyr +
Hence the front anti-dive against forces exerted on the wheel at ground level (e.g. for outboard brakes) is

p(y/x) _ tanfy
H/L  tanfy;

Jop =
where 0,4 is the ‘ideal’ angle for full anti-dive, given by

tan Ogﬁ = ﬁ

10.4 Anti-Rise

In braking, with outboard brakes, at the rear the anti-rise is correspondingly given by

_tan O
tan Oy

er

where
H

tan Ggri = m

is the full anti-rise angle.

10.5 Anti-Lift

In the case of traction, with tractive force
F = Fi+ F, = tmAx + (1 — t)mAy

where ¢ is the tractive force fraction on the front wheels, the tractive force is produced because of torque in
the driveshalfts, totalling for both wheels tmAr at the front and (1 — #)mAr at the rear, neglecting rotational
inertia of the wheels. This means that the effective line of action of the tractive force is transferred to the
centre of the wheel. The front anti-lift is

iy —r)/x] _ tanfr

T — -
cf H / L tan O

where 0. is the angle of the line CE at the front:

tan O = 4



Pitch Geometry 193

and 6. is the angle for full anti-lift, given by

H
tan 9Cﬁ = i

10.6 Anti-Squat

The traction anti-squat at the rear is

 — (1 _t)[(y_r)/x] _ tan 6,
“ H/L B tan Ocri

where the full anti-squat angle is

0 H
tan i = —(1 — L
In the case of inboard brakes, the braking force is associated with a driveshaft torque, so the inclination of
line CE gives the relevant angle. All the above equations can be extended to include the effect of the
translational and rotational inertia of the unsprung masses. For example, during linear vehicle decelera-
tion, the wheels also have angular deceleration, with angular momentum change that must be provided by
the moment of a longitudinal load transfer.

10.7 Design Implications

In practice there are objections to anti-dive geometry. It tends to cause harshness of the front suspension
on rough roads because the wheel moves forward as it rises, attacking the bump; it may also cause
steering kick-back and wander under braking. It also becomes more difficult to achieve good-quality
steering geometry, so instead of full anti-dive a proportion is often used, usually expressed as a
percentage. Up to 50% anti-dive has been used on passenger cars. Amounts in excess of 50% have been
used on ground-effect racing cars because of their extreme sensitivity to pitch angle. However, a large
amount may be problematic on small-radius turns, where the large steer angle plus cornering force
results in significant jacking forces. The most successful applications of anti-dive seem to be those in
which the geometry is arranged to minimise changes of caster angle, and the anti-dive quantity is more
moderate at 20% to 25%.

Considering again Figure 10.3.1, characterised by the angle 6, and horizontal anti-dive arm radius Lp,
it is apparent that vertical motion of the wheel (i.e. suspension bump) will give an effective rotation about
some point. In the case of arigid leading arm, this point is simply the body-fixed point E. Any such rotation
changes the effective angle of motion 64 so the anti-dive coefficient will vary significantly with the
suspension bump position. The pitch angle of the body, perhaps 4-5° in strong braking, will also influence
04¢. Any effective rotation also changes the caster angle relative to the body; this can be eliminated, if
desired, by using parallel arms, although this still leaves the body pitch angle affecting the caster angle,
that is, the anti-dive and the geometric caster change can be chosen independently.

From Section 5.10, the caster angle relative to the ground, expressed as a linear model equation, is

Oc = Oco— OB + EBcasZst

where 6 is the static caster angle, 6 is the body pitch angle (positive nose down), and egc,s is the bump
caster coefficient. The possibility exists of maintaining - constant by using the bump caster coefficient to
counteract the effect of the body pitch angle.



194 Suspension Geometry and Computation

The bump caster coefficient is

1

EBCas = 7
Lap
which is the reciprocal of the pitch arm radius. The front and rear suspensions are of approximately equal
stiffness, so the front suspension bump is

zsf = %LW 0
where Lyy is the wheelbase. The bump caster angle is then
OBCas = EBCasZst = EBCas 5 Lw OB
To fully offset the body pitch angle effect,
Opcas— 6 =0
SO requiring

2
EBCas = E
Considered even more simply, the vehicle pitches roughly about its mid-wheelbase position, so if the point
E is at mid-wheelbase then the caster angle relative to the road will not be affected. Therefore we desire the
pitch arm radius Lp to be Ly/2. This simple analysis can easily be made more accurate for particular
cases by calculation of the actual pitch angle and suspension bump values.

In the case of the pitch-up caused by traction forces, with rear-wheel drive it is quite common to have
some anti-squat at the rear. It is not possible to provide anti-rise at the front of a rear-wheel-drive vehicle
because there is no associated horizontal force applied to the wheel. Anti-squat may have detrimental
effects on traction on rough surfaces. Anti-squat effects may also be achieved by other arrangements of the
rear suspension, such as a lift bar, which is rigidly attached to the rear axle, protruding forward and acting
upward on a rubber block on the body; the axle reaction torque therefore provides an upward force on the
rear body, depending on the length of the lift bar, relieving the rear springs.

Having chosen desired ‘anti’ coefficients, at least a partial geometric specification for the suspension
side view can be made.

For the front suspension, the anti-dive gives 6. If the vehicle is front-wheel drive, then the anti-lift gives
0.rand the point E is thereby determined for the front. For the front suspension with rear-wheel drive, 6. is
unspecified, and the length of the anti-squat arm could be chosen freely, possibly infinite, or on other
criteria, such as the caster angle effect as described above.

For the rear suspension with rear-wheel drive, the required anti-rise and rear-wheel-drive anti-squat
together specify E. For the rear suspension of front-wheel drive, only the anti-rise is relevant, and then the
arm length may be freely chosen.

The preceding simplified description and analysis of longitudinal behaviour is based on approximate
two-dimensional considerations to convey the principle. A more complete quantitative analysis requires
consideration of the suspension in three dimensions, as in later chapters.

1
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Single-Arm Suspensions

11.1 Introduction

This chapter deals with suspensions in which the wheel hub is located by a single rigid arm (various type of
trailing arm, swing axles, etc.). The alternatives, in later chapters, are to use location by two arms, as for
double wishbones, or by one wishbone and a trunnion, as on struts, and some other types. Pictures of many
examples of these various types of suspension appear in Chapter 1.

Considering rigid single-arm suspensions, then, there are two rotational axes to consider, the wheel
rotation axis and the arm pivot axis. The wheel rotation axis is fixed relative to a single arm, which is
pivoted on the vehicle body. For a single-arm suspension, this pivot axis is fixed relative to the body. The
fixity of this axis is a distinctive feature from other suspensions in which the pivot axis is virtual and moves
relative to the members and the body. A fixed position of the axis generally simplifies the analysis, and
certainly changes the details of the methods of solution.

These are all independent suspensions, so the geometric steer effects are expressed in basic form by the
bump coefficients (bump camber, bump steer, etc.). In general, a slope angle of the pivot axis, out of the
horizontal plane, introduces linear bump steer. A sweep angle, in plan view, affects the quadratic bump
steer coefficient. Camber coefficients are also affected. The small static wheel toe and camber angles also
interact with the axis angles to give some bump steer and camber effects, not always negligible. The pivot
axis height also introduces small steer effects in some cases. In general, then, it is necessary to investigate
the effect of:

(1) the pivot axis plan-view sweep angle ax;

(2) the pivot axis slope angle (out-of-horizontal) ¢ ,,;
(3) the pivot axis height H,;

(4) the wheel static toe angle 6¢;

(5) the wheel static camber angle y,.

These may influence, in the present context:

(1) the bump steer coefficients egg; and egsy;

(2) the bump camber coefficients egc; and epco;

(3) the bump scrub rate coefficient eggcqo (roll centre height);

(4) the bump scrub rate variation coefficient egscq; (roll centre movement).

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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For the occasional cases of a rigid arm with steering, additional factors are:

(5) the bump kingpin inclination angle coefficients egky; and epki;
(6) the bump kingpin caster angle coefficients egxc; and egkca-

For the bump steer, for example, various mathematical models may be adopted, depending on the
purpose of the analysis. The main models are:

(1) exact analytical geometric model;

(2) approximate geometric model;

(3) linear bump steer coefficient;

(4) quadratic model (linear and quadratic bump steer coefficients);
(5) polynomial bump steer expression;

(6) accurate numerical (computer) solution.

Exact geometric models are sometimes useful, but require some skill to achieve, and are, except for
the very simple cases, rather unwieldy for most purposes. They have the advantage of being accurate
if correctly solved, but do not necessarily provide good insight because of the complexity of the ultimate
algebraic expression.

Approximate geometric models are simple to use, and are usefully close to correct over the practical
range of application.

Linear bump steer coefficients, usually derived from simplified geometric models, have been widely
used for many years. These, naturally, give considerable insight to linear bump steer effects, but omit the
second-order effects.

The quadratic bump steer expressions, including linear and second-order terms (the first and second
bump steer coefficients), give excellent insight, and normally include all important effects, that is, they are
accurate enough. They are likely to be used as a convenient summary, for human consumption, of the
results of an accurate numerical computer analysis, or as the design intent, as a suspension specification.

The polynomial bump steer equation adds cubic, quartic, etc., terms to the quadratic form above.
These are found by fitting a polynomial expression, of whatever order is desired, to numerical results.
The additional terms may occasionally be of interest, but are not usually very important, so not very
helpful to the suspension designer.

The accurate numerical solution of a suspension is achieved by computer, using sequential
geometric analyses, each exact algebraically and relatively simple, without ever needing a collected
algebraic expression for the result. This method is very effective, particularly for a general case where the
direct geometric solution may be tricky and unwieldy. A computer can easily produce graphs of bump
steer, etc, against suspension bump, but for human consumption it is usually best to also produce the first
and second bump steer coefficients by a quadratic curve fit to the computer generated points.

Frequently used here will be the series expansions for sin § and cos 6, truncated to second-order terms
only, to give the first- and second-order bump coefficients. The series are

”® &
0= 6— — 4 —
s 6 T 120
0> ot 6
h—1- > 42 7
€os 2 T2 70"

11.2 Pivot Axis Geometry

Single-arm suspensions are characterised mainly by the angle of the pivot axis to the vehicle body, i, and
0ax in Figure 11.2.1. Note here that the arm length, pitch arm length and swing arm length are from the
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(a) (b)
F = E.
e [
D'g.

—

View V2

S

Rear view, V4 Side view, V5

Figure 11.2.1 General rigid-arm pivot axis geometry: (a) plan view; (b) view V,, the pivot axis; (c) view V3,
transverse to the pivot axis; (d) view Vy, the rear view; (e) view Vs, the side view.

axis to a point, and the horizontal projection of these lengths is called the radius, following the terminology
of SAE J670e (e.g. the swing arm radius). For a pure trailing arm the axis is transverse, perpendicular to
the vehicle longitudinal centre plane. If the axis is perpendicular to the centreline in plan view but inclined
in rear view, the result is a sloped-axis trailing arm. If the axis is swept in plan view, up to about 30° from
the transverse Y axis (i.e. at least 60° from the longitudinal X axis), the result is called a semi-trailing arm.
The semi-trailing arm may also have its pivot axis out of the horizontal plane, giving the sloped-axis
semi-trailing arm. Also, the height of the pivot axis may vary.

If the arm pivot axis is strictly longitudinal, parallel to the X axis, and at the normal height of the
wheel centre, the result is a simple transverse-arm suspension. If the pivot axis is slightly to the same
side of the centre plane as the wheel, and the lateral location is by the length of the driveshaft, it is a
swing-axle suspension. There is no basic geometric difference between the transverse arm and a swing
axle. If the pivot axis is parallel to the X axis but lower than the static wheel centre, the result is a low-
pivot transverse arm, or a low-pivot swing axle, depending on exactly how the lateral location is
achieved. If the pivot axis is angled to the horizontal in side view, the type is a sloped-axis transverse
arm or a sloped-axis swing axle. If the axis is angled in plan view, not exactly parallel to the X axis, but
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Table 11.2.1 Basic rigid-arm variables (see Figure 11.0.1)

(€8] Pax the pivot axis sweep angle

2) 0 ax the pivot axis yaw angle, = /2 — (s,

3) Pay the pivot axis slope angle

“4) Hp height of the pitch arm centre

%) Hg height of the swing arm centre

(6) Hay height of the pivot axis (at C)

@) La the arm length to the wheel centre

®) Rx the arm radius (in plan view)

© Lc length to the ground contact point
(10) Rc arm radius to the ground contact point
(11) Lp the pitch arm length
(12) Rp the pitch arm radius (in plan view)
(13) Lg the swing arm length
(14) Rq the swing arm radius (in plan view)
(15) N the arm angle, wheel end up
(16) Ry the wheel static loaded radius

up to about 30° from it (i.e. at least 60° from the transverse Y axis), the type is a semi-swing-axle or a
semi-transverse arm.

In the most general case, simply a general rigid arm, the axis is at some angle to the X axis and at
some angle to the horizontal plane, and also at no particular height relative to the wheel centre. Naturally
this is the most complex case to analyse, and subsumes all the other special cases above.

Figure 11.2.1 shows the pivot axis geometry for the general case. The pivot axis is EF. Point E = Ep is the
pitch arm centre, point F = Eg is the swing arm centre. The main variables are listed in Table 11.2.1.

For numerical analysis the pivot axis is best expressed in parametric form, by one point and direction
cosines. In Figure 11.2.2, the pivot axis is PQ. Consider this axis also to be specified by the coordinates of
point P, and the direction cosines of PQ, that is, from P to Q, tending inwards and towards the rear of the
vehicle. The dimensions are

PQ=L
QR = Lsin ¢y,
PR = Lcos ¢,

PS = Lcos ¢, cos Oax
SR = L cos ¢, sin O

(b)

qb<
2
5 Leos®
< Ax
& X
2
Z S wa
=3
= .8 Leos®, sin 0, Y
7z S L co8 G BTN
Rear three-quarter view Plan view

Y

Figure 11.2.2 Pivot axis geometry for direction cosines. QR is parallel to Z. Triangle PRS is in the horizontal plane
with PS parallel to X and RS parallel to Y.
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The direction cosines (/, m, n) in positive (X, Y, Z) directions are therefore

PS
= _ﬁ: — COS ¢hp, COS Oax
SR
= f%: — €08 hp, SiNBax
QrR .
n:%: SlIl(bAX

It is easily confirmed that, as is necessary,
P+ +1* = cos” da, (sin” Oax + c0s® Oax) +sin* o = 1

Table 11.2.2 summarises the conversion equations between the axis angles and the direction cosines as
specified above.

It is really required to relate the wheel steer and camber angle changes to the suspension bump rather
than just to the wheel centre bump. The suspension bump is the vertical position of the lowest point of the
wheel, in the contact patch, the wheel considered geometrically as of constant radius, effectively the
loaded radius R;. With wheel bump, the contact point height is

Zcp = Zw — Ry cosy
The static (initial) value is
Zcpo = Zwo — Ry cos g
If the ground plane is the datum level plane, then this is zero. The actual suspension bump is
25 = Zcp — Zcpo = (Zw — Zwo) + RL(cos 75 — cos )
or
zg = zy + Ry (cos yy — cos )

For a small camber angle, the wheel centre may therefore be taken as having the same vertical position
change as the suspension bump, but preferably the effect of camber variation would be included,
particularly for large camber angle changes (e.g. for a swing axle or other short transverse arm).

Table 11.2.2 Pivot axis angle and direction cosine conversion equations

| = —cos ¢, cos Oax
m = —CoS ¢, sin Oax
n= sing,,
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Considering a simple trailing arm, with the wheel also rotationally fixed relative to the arm, as the
arm rises the lowest point of the wheel is not a fixed point of the wheel. Hence, there is no very simple
direct solution for the lowest point in general. Further analysis of the wheel bottom point is given in
Section 5.8.

Consider the vertical plane transverse to the pivot axis, Figure 11.2.1(c), which is not the same as the
plane of the wheel axis. Given the initial dimensions, the radius from the pivot axis to the contact patch
point can be established, as can the angle of this line. However, this is complicated by any out-of-
horizontal inclination of the pivot axis. The required arm bump angle for any suspension bump can then be
solved explicitly. With the datum plane at ground level, in the initial position,

Zwo = Ry, cosyg

Numerically, one method is to project the pivot axis into the longitudinal vertical plane of the wheel centre,
giving the pitch centre point Ep, and into the transverse vertical plane giving point Eg, the swing centre
point. The perpendicular may be dropped onto the pivot axis from the wheel centre. The length of the
perpendicular follows, as does the angle.

Given the arm angular position angle 6, to calculate the wheel centre bump,

zZw = La(sin 0 — sin 6a0)cos ¢,
The suspension bump is
zs = zw + Ry (cos py—cos y)
This gives the suspension bump as
zs = La(sin @5 — sin Oa¢)cos ¢, + Ry (cos g — cos y)

Direct solution would require an algebraic relationship between the camber angle y and the arm angle 64,
a relationship which is not known accurately in advance.

Geometrically, then, it is much more convenient to approximate the suspension bump as the wheel
centre bump, although this is not precise. This limitation is easily overcome in a numerical solution.

11.3 Wheel Axis Geometry

Wheel axis geometry was analysed in Chapter 5. The main results are summarised for convenient
reference in Table 11.3.1.

Table 11.3.1 Steer and camber angle conversion equations

/=cos 7y sin &

m=—cos y cos &
n=sin y
7 = asinn

6 = atan <7i>
m
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11.4 The Trailing Arm

The pure trailing arm has its pivot axis exactly perpendicular to the vehicle centre plane. In general, there is

wheel static camber and toe, but for simplicity initially consider these to be zero. The wheel axis is then

parallel to the pivot axis. Bump then has zero effect on steer and camber angles (Table 11.4.1). The initial

bump scrub and bump scrub variation coefficients are zero, and the geometric roll centre is at ground level.
There is a variation of the pitch arm radius, Figure 11.4.1. The arm angle is given by

Zy — Hax

sinfy = i3
A

The initial, static, value of the arm angle is given by

Zwo — Haxo

sin OA() =
La

and is generally non-zero. The simplest geometry occurs when the initial angle is zero, but in practice this
may give excessive braking anti-rise (Chapter 10).

Practical pure trailing arms often include some static toe and camber. These angles are always small,
and can be expected to have only a limited effect on the bump coefficients. However, this really needs to be
demonstrated rather than just claimed. Therefore it is desirable to obtain explicit expressions for them.
This is also a useful demonstration of method.

Consider a pure trailing arm with static camber angle y,. For simplicity, the pivot axis is taken as at the
same initial height as the wheel centre. For a passenger car the static camber would be 1 or 2 degrees, but
for a racing saloon with rear trailing arm it would possibly be beyond —3° (—0.05 rad). By inspection,
when the trailing arm is hypothetically rotated up to an arm angle of 90°, the camber angle has become
zero and a toe-out angle of § =y, has appeared. When the arm is lowered to —90°, the camber has again
become zero, but the steer toe-out angle has become 6 = —7,. Prospectively, the relationships are

0 = ygsinfx
Y = Yo cOS Oa
Expanding the sine and cosine series for the arm angle out to a maximum of the second-order term gives

=700a

7 ="7(1 _%BZA)

For small arm angles, the suspension or wheel bump is related to the arm angle simply by

0r =
A RP

Table 11.4.1 Coefficients for a pure trailing arm, no static
wheel angles, so all zero

eps1 =0
eps2=0
epc1 =0
epc2=0
&scao =0

&Bscal =0
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(a)

Zg
I v g

Figure 11.4.1 Pure trailing arm: (a) side view, showing arm length L, pitch arm radius Rp; (b) wheel axis with static
steer and camber angles; (c) rotation of point D about centre at B.

so the wheel angles become

Yo
5 =-—
Rp S
Yo 2
Y VO ZRIZ) S

Therefore the static camber angle has introduced linear bump steer and quadratic bump camber
coefficients:
Rp
Yo

EBC2 = —E

EBS1 =

Of these, the former is more significant. With a static camber of —0.05 rad and a pitch arm radius of 0.45 m,
the result is a linear bump steer coefficient of —0.11rad/m, which is —0.64 deg/dm (deg/decimetre)
or —0.16 deg/inch. This is not negligible.
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Consider now zero static camber, but a static toe-out angle of 8. At an arm angle of plus 90°, this
produces zero steer angle and a camber angle of y = —J. At an arm angle of —90° again the steer angle
has gone to zero, but the camber angle becomes y = + §y. Prospectively, then,

8 = pcosfa
P = —08psinfys
For small angles, as before, this becomes
S50 5
6= 60 271?%25
do
=——z
7 Rp S

The result is therefore quadratic bump steer and linear bump camber coefficients

oo
E€BS2 = — 2_Rlz>

do
EBC1 = — R_P

Because the static toe angles are likely to be small in all cases, and such angles are often introduced with
the intention that the toe angle will go even closer to zero when actually running, these effects are likely to
be small. For example, with 6o = —0.02rad and Rp=0.45m we have egs, =0.05 rad/m® = 0.028 deg/
dm?.

By these simple expressions, summarised in Table 11.4.2, the effect of static wheel toe and camber
angles are easily evaluated rather than just assumed to be insignificant.

A more thorough analysis of the above geometry, now to be given, confirms that the expressions given
are good approximations, and demonstrates a useful principle. Figure 11.4.1(b) shows the wheel axis
geometry with the actual pivot axis GH.

Now as far as changes of steer and camber angles are concerned, rotations about alternative parallel axes
are entirely equivalent, adding only a pure translation. Rotation about the real axis is of course necessary
for evaluation of actual movement, such as bump displacements. In the case of the pure trailing arm, the
real pivot axis is parallel to the Y axis, and parallel to the line AB. Therefore, for investigation of steer and

Table 11.4.2 Coefficients for a pure trailing arm, with static
wheel angles (6, o)

A

EBS1 =

Rp
EBS2 = — ﬁ
do
€BC1 = — R_P
EBC2 = _2770%

The bump scrub coefficients remain zero.
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camber angles only, simply consider the wheel and wheel axis to rotate about the line AB. Positive arm
angle 0, is a positive bump position, with a lowering of point C relative to B, and a lowering and forward
movement of point D, the second point of the wheel axis AD. It is changes of the position of the line AD
that are of interest, with point D rotating about B as seen in Figure 11.4.1(c). As established earlier,

AD=1L
BC = Lcos v, sin g
CD = Lsin vy,

After rotation, the value of Xp, measured from the line AB, is

Xp = (Lcos y,sin ) cos O + (Lsin py) sinfa
The consequent steer angle is then given by

sind = XT],) = C0S 7 sin 8y cos O + sin 7y, sin O

Now introducing a small-angle approximation for the steer and camber (including cosyy,=1), and
expanding the arm angle to the second term of its series,

5= 50(17;93\) + 70 0a

Inserting the small-angle approximation

zs
Op = —
AR
gives the toe-out steer angle as
Yo %
0=00+—2s — —
o+ Ro Zs 2R12, Zg

which is in agreement with the bump steer coefficients obtained earlier (Table 11.4.2).
Similarly, for camber after rotation (see again Figure 11.4.2 (b)), relative to the line AB, the height of
point D is

Zp = —(Lcosyysindy) sinfa + (Lsin ) cos O
and the sine of the camber angle is given correctly by
. Zp . . .
siny = T = —Cos ) sin 8 sin O + sin y, cos O
Using the small-angle approximations for § and y, and expanding the arm angle to the quadratic term, gives
y=—800a + (1 —-16%)
Now substituting the linear approximation for the arm angle in terms of the bump position gives

_ S Yo 2
FT0 T RS T RS

again in agreement with the semi-intuitive expressions of Table 11.4.2.
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Table 11.4.3 Pure trailing arm static toe and camber angle bump steer effects

sind = cos y sin p cos O + sin y, sin O
siny = — cos y, sin 8y sin B + sin y cos O

This also illustrates the use of rotation about the most convenient parallel axis for investigating steer
and camber angles.

The accurate equations for the angles are collected in Table 11.4.3. These are easy enough to use, but
even for this extremely simple case are less revealing than the simpler approximate expressions of
Table 11.4.2.

11.5 The Sloped-Axis Trailing Arm

The pure trailing arm has a geometric roll centre at ground level, which may be regarded as too low. One
way to raise it is to incline (i.e. ‘slope’) the pivot axis in rear view, out of the horizontal plane,
Figure 11.5.1, introducing the appropriate bump scrub coefficient. Also, a sloped axis introduces a bump

(a)

et

(b) (c)
G| I

Ax

Plan view Rear view

e,
u

Wi

Figure 11.5.1 Trailing arm with a sloping pivot axis, no static steer or camber: (a) rear three-quarter view; (b) plan
view; (c) rear view.
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steer effect, which may be desired. For simplicity, here, the wheel is considered to have zero static toe and
camber angles. The pivot axis remains perpendicular to the vehicle centreline as seen in plan view, but is
sloped at the angle ¢, in rear view, with a positive angle considered to be with the pivot axis rising as it
moves from the wheel towards the vehicle centreline.

To investigate the changes of wheel axis angle, consider rotation of this axis about the line AJ parallel to
the real pivot axis GH. The wheel centre A does not move. The second wheel axis point B moves around
the axis AJ, in a circle around the point J. To obtain convenient approximate equations, the slope of the
pivot axis is considered to be small. This is not too bad an approximation as practical values are likely to be
less than 10°. Positive rotation of the arm, positive wheel bump, moves point B initially backwards relative
to point J, away from point I.

The basic line lengths are:

AB=L
BJ = Lsin ¢y,

Relative to the line AB, with X forwards and Z upwards, approximately,
Xg = —Lsin ¢y, sinfy
Zp = Lsin ¢, (1—cosbp)

The resulting bump steer and camber angles are given by
X
sind = TB = —sin¢y,, sinfx
siny = TB = sin¢p, (1 —cosbya)

With the usual small-angle approximations, as in previous sections, the resulting angles may be
expressed as

S = — ¢Ax zs
Rp
dJAx 2
y = z
2R:S

Table 11.5.1 Coefficients for a sloped-axis trailing arm,
with static wheel angles

£ps| = — ¢A;a_/0
P
do
EBS) = — ——
BS2 2R
do
enep = — -2
BCI1 Rp
e = Pax—Yo
BC2 = o R

£BScdo,Y = tan ¢y

€Bsedl,y = 0
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so the result is a linear bump steer coefficient and a quadratic bump camber coefficient:

& - _ ¢Ax
BS1 RP
¢Ax

& + 2
BC2 2Rl%

This is a similar result to the analysis for wheel static camber on the trailing arm, as in Table 11.4.2, but
with inverted signs. This is as would be expected, as the angle changes are basically a property of the
lack of parallelism of the wheel axis and the pivot axis. Therefore the sloped-axis trailing arm, for a
reasonably small inclination angle, has the properties of Table 11.5.1. The bump scrub coefficients
included in the table follow easily by inspection of the rear view.

11.6 The Semi-Trailing Arm

The semi-trailing arm has its pivot axis swept in plan view, at the sweep angle 5, , considered positive when
the pivot axisis angled rearwards whilst passing towards the centreline, as GH in Figure 11.6.1. For simplicity,
in the initial analysis, the pivot axis is considered to be in the horizontal plane, that is, at zero slope angle at
wheel centre height. Also, the wheel initial toe and camber angles are taken as zero.

(a)

o]

I.B

Plan view J Rear view

Figure 11.6.1 The basic semi-trailing arm, with pivot axis sweep angle i, (a) rear three-quarter view; (b) plan view;
(c) rear view.
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As the suspension arm rotates, for angle analysis the wheel axis AB may be considered to rotate about
the axis AJ parallel to the real pivot axis GH, with B rotating about J. The basic dimensions are

AB =1L
BJ = Lsin i,
Relative to the line AJ, point B moves in a circle, with coordinates, relative to AJ, of

Xp = — Lsin iy (1—cosfp)

Zg = — Lsini,, sinfp

The bump steer and camber angles are given by

X

sind = TB = —sin o (1—cosha)
Z

siny = TB = —sin i, SinGp

Using the usual small-angle approximations, as in previous sections, the angles may be expressed
approximately as

6:_1»[]/\)(%0/2%
Y= _le/AxeA

and in terms of the suspension bump as

lw[lA)z( Zé

2Rp

_ lw[fo zs
Rp

so the effects introduced by the axis sweep angle are a quadratic bump steer coefficient and a linear bump

camber coefficient:

y=

_ l/ij

EBS2 = 2R12,
&pcl = — {j/Ax
Rp

The small-angle approximations on the pivot axis angle may not be so good in this case, as sweep angles up
to 30° may be used, but the results of this simple analysis give an excellent insight into the effects of pivot
axis sweep — specifically, a second-order bump steer and a first-order bump camber.

As discussed in Chapter 8, the lateral bump scrub for this suspension can be found simply by projecting
the real pivot axis into the transverse vertical plane of the wheel centres, giving the swing centre point Eg at
height Hs. The bottom point of the wheel rotates about this point, in rear view, so the lateral bump scrub
rate coefficient is

Hs Hs
EBScd0,Y = R o tan i,
s P
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Table 11.6.1 Coefficients for a semi-trailing arm with
sloped axis and static wheel angles

ps| = _ Pax— o
Rp
€BS2 = — LA;I—; %
P
€BCl = — —l/ij il
Rp
epcy = ¢A2XR_2 Yo
P
€BScd0,Y = Hs = Hs tan lpr
YR R
1 tan P,
EBScdlY = *R—S =- Rp

where Lp = Lg tan s is the pitch arm length, Figure 11.0.1. Therefore, approximately,
Hg
EBScd0,Y = Ro Pax

and the lateral bump scrub rate variation coefficient is

& — l — ‘J/Ax
BScld,Y Rs_ Rp

These results are summarised in Table 11.6.1, including superposed terms for wheel static toe and camber.

11.7 The Low-Pivot Semi-Trailing Arm

A pivot height different from the wheel centre height would normally be introduced to change the
longitudinal properties, such as the anti-lift or anti-rise.

From the principle of the parallel axis rotation, it is evident that a lowering of the pivot axis should have
no effect on the bump steer or bump camber angles.

However, this may be a confusing point, because when the pivot axis is at a different height from the
wheel centre, then the second-order bump steer (egsy) of the semi-trailing arm seems to become
asymmetrical about the static bump position. In effect this would introduce a first-order bump steer

eps1 = (RL— Hax)eBs2

This is typically a small effect, but not really negligible; for example, Lp =0.450m, R =0.300 m,
Hay=0.150m, o, =0.30rad, eggr, = —0.741 rad/m?, egs; = —0.111 rad/m = —0.64 deg/dm. However,
the use of this term presupposes that the wheel static steer and camber angles are specified when the wheel
centre is at the same height as the pivot axis. If these are specified at the static position, as they would
normally be, then the effects are automatically accounted for, and compensated, with no resulting first-
order effect other than that from the wheel axis angles. When the wheel angles are specified at the level arm
position, at the static position there are extra wheel axis angles that offset the above effect.
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The bump scrub may be affected considerably, of course, but the equations of Table 11.6.1 continue to
apply.

Varying the axis height at constant arm radius will vary the static arm length, which would change the
relationship between the arm angle and suspension bump, so having some small, but non-zero, effect on
the coefficients. Numerical results do show some small effects due to axis height.

11.8 The Transverse Arm

The basic transverse arm, equivalent to the simple swing axle, has a pivot axis parallel to the vehicle
centreline, at or close to the wheel centre height. For a true swing axle, the swing arm length is somewhat
less than half of the track, wheel lateral location being by the driveshafts which are pivoted at the sides of
the final drive unit, Figure 11.8.1. An extra arm is used to control the longitudinal position of the wheel,
hence also completing definition of the pivot axis. The pitch arm length and radius are infinite, and
therefore unsuitable for use in some equations.

In the absence of wheel static steer and camber, it is evident that the wheel camber angle is

y=—0a
and the steer angle remains zero. Therefore, for this simple case, nominally,

1
EBCl = — 5~

Rs
The lateral bump scrub rate is
e _ HAx
BScd0,Y Rs
and the lateral bump scrub rate variation is
1
€BScdl,Y = — 5>~
Rs

The introduction of static steer and camber angles has some interesting effects at large arm angles,
approaching 90°, beyond the practical range but of interest for geometry and for accurate analytic
expressions, because at an arm angle of 90° the properties are discontinuous.

(a)

Pivot axis

*RI. H)\X= H":'»+ I
77777 777 Z T
Fed R > .
S Rear view |

Figure 11.8.1 The simple transverse arm (swing axle), rear view.
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Pivot axis

L B -
L,tan9,
C

Plan view

Figure 11.8.2 The swing axle with static toe angle, plan view.

Introducing a static camber angle y,, within the practical range of operation this simply adds y, to the
bump camber. Introducing a positive static toe-out angle &,, at an arm angle of 90° (n/2rad) the
camber angle becomes (7/2 — &) and the steer angle is zero. If §,is negative (i.e. a toe-in), then the camber
at 90° arm angle becomes —(n/2 — §y). At — /2 arm angle, the camber angle becomes —(n/2 — §;) and the
steer angle is zero. In fact in these extreme arm positions the result depends on an infinitesimal toe-in or
toe-out.

Figure 11.8.2 shows the plan view of a swing axle with static toe angle. The wheel axis is AB, and line
AC is the perpendicular to the pivot axis. When the arm moves in bump, the wheel centre A moves around
C, and so towards C in the plan view. Therefore the steer angle is given by

L, tan 6 tan &
tand = 2 %0 0

LacosOs  cosOa

As the arm angle approaches 90°, the tangent of the steer angle goes to infinity, and the steer angle tends to
sign(dp) times /2 (90°). Considering practical cases, for a small arm angle the approximation may be
made that

tan & & % ~ tan 8(1+163)
This then gives
0=~ 0+ %Z%
so introducing a quadratic bump steer coefficient
&psy = %
BS2 = ﬂ

Because the static steer angle is likely to be small, the value of this is not a very significant effect in
practice. Within the practical range,

Table 11.8.1 summarises the results.
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Table 11.8.1 Coefficients for a simple transverse arm, with
static wheel angles

eps1 =0
0
eps2 = > =0
2Ry
1
EBCl = — 355~
Rs
egc2 =0
_ HAx
EBSc0d,Y = R
S
1
EBScdl,Y = — R_
S

11.9 The Sloped-Axis Transverse Arm

The transverse-arm pivot axis may be sloped out of the horizontal plane, at angle ¢,, whilst remaining
parallel to the centreline in plan view, giving the sloped-axis transverse arm. Typically this is done to
obtain anti-squat and anti-rise characteristics, or bump steer, to be analysed here. For consistency with
trailing and semi-trailing arms, positive slope angle ¢,, will be considered to be when the axis rises
towards the rear of the vehicle. Practical swing axle design may use positive or negative values of pivot
axis inclination.

Figure 11.9.1 illustrates this case. For practical values of axis inclination, the effect on camber is small,
but the effect on steer is significant. In Figure 11.9.1(a), when the wheel bump is zy, = zg, the centre of the
wheel will move forwards by zg tan ¢, with a resulting bump toe angle (toe-out as positive) of

Zg tan d)Ax
Rs

§ =
with, therefore, a first bump steer coefficient

_ tan d)Ax ~ d)Ax
EBSI = — — R ———

Rs Rs

Table 11.9.1 summarises the results for this type of rigid-arm suspension.

2 (®) | cL
z,, tan Q'J',.\,‘ Pivot axis |

=R |

S 3 :

AL A LI Ao /s |
Side view Plan view |

Figure 11.9.1 The transverse arm with sloped axis: (a) side view, (b) plan view.
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Table 11.9.1 Coefficients for a sloped-axis transverse arm,
with static wheel angles

£Bs1 = _ P
Rs
eps2 =0
EBCl = — 5
Rs
epc2 =0
P HAx
BScd0,Y =
Cl s RS
1
€BScdl,Y = — ;5
Rs

As a matter of interest, in 1940 Henry Ford was granted a patent for a swing axle explicitly featuring
a slope angle to give bump toe-out, Figure 11.9.2. With a large load on the vehicle, or in riding bumps,
the large first bump camber coefficient of the swing axle causes rather a large camber angle with
associated side forces, which cause excessive tyre wear. This can be offset by introducing bump toe-
out (negative egg;) to reduce the net side force to zero. The relevant tyre characteristics are the
cornering stiffness C, relating the cornering force to the slip angle, and the camber stiffness C, relating
the side force to the camber angle. For a suspension bump zg, the first-order bump steer and camber
angles are

8 = epsi7s
Y = €BC1Zs
The consequent tyre side force is
Fy=C,6 + Cyy

= Cqensizs + Cyepcizs

To eliminate the bump side force requires

eesi _ G

£BCl Cu

Now the ratio of the tyre coefficients is mainly a characteristic of the tyre carcase construction. In the
days of the Ford patent, bias-ply tyres were the norm, with a ratio of about 0.15. Nowadays, radial-ply
tyres are normal for passenger cars, with a ratio of about 0.05. A swing axle has a first bump camber
coefficient of about —1.7 rad/m (—10 deg/dm), so for bias-ply tyres the required bump steer coefficient
is about plus 1.5 deg/dm, and for radial ply tyres about 0.5 deg/dm. Using, from Table 11.9.1,

bax = —&BsiRs

with a swing arm radius of about 0.6 m, the required axis slope is —9° for bias ply tyres and —3° forradial
ply tyres. The negative slope means that the axis should be down towards the rear, in agreement with
Figure 11.9.2.
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Sept. 10, 1940. H. FORD 2,214,456
MOTOR VEHICLE
Filed Nov. I, 1957

1‘3} pii

Figure 11.9.2 A swing axle with bump toe-out to compensate for side forces resulting from bump camber action
(Ford, 1937).

11.10 The Semi-Transverse Arm

Analogous to the semi-trailing arm, the semi-transverse arm has a pivot axis in the horizontal plane, but
angled in plan view, the pivot axis being fairly closely but not exactly parallel to the X axis. For consistency
with semi-trailing arms, the angle of the axis can be measured alternatively from the negative Y-axis
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Pivot axis
\ % |

j
A< e

Ax

Plan view |

Figure 11.10.1 Semi-transverse arm in plan view, axis sweep angle ¢, from the Y axis, axis yaw angle 6 o from the X

axis.

direction (left wheel), giving the sweep angle 5. However, as in Figures 11.0.1 and 11.10.1, the actual
deviation from a simple transverse arm is the complementary angle, the axis yaw angle, which will be

denoted by O:

T
GAX = 5_ '!/Ax

This angling of the axis has several effects. In Figure 11.10.1, dropping a perpendicular from the wheel
centre to the pivot axis, it may be seen that the wheel centre A moves in an arc about point C, the foot of the

perpendicular.

The radius of the arc of point A is the arm length L. As the wheel bumps or droops, the wheel centre A

moves, in plan view, towards C, by a distance p given by

2
1
p= LA(I—COSGA) = LA %(ﬁ) %mz

Ra
The movement of the wheel centre in the longitudinal X direction is

. Oax -
XA =psinfay = ﬁzs

There is therefore a bump steer angle, approximately

Xa  Xa  Oax ,
_SA AT
Lag Ra 2RA

5=

consequently giving a second bump steer coefficient

0Ax

E€BS2 = — ﬂ

2
S

The pitch and roll force characteristics are solved in the usual way, projecting the axis into the relevant
planes to obtain the swing centre Eg and pitch centre Ep points. Table 11.10.1 summarises the coefficients

for the semi-transverse arm.
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Table 11.10.1 Coefficients for a semi-transverse arm,
including axis slope and static wheel angles

¢
EBSI = — RAX
A
e _ ( GAX - 80)
BS2 = —
2R2
1
& =——
BC1 Rs
epc2 =0
Hs
EBScd0,Y = ng
1
EBScdl,Y = _R_
S

11.11 The Low-Pivot Semi-Transverse Arm

A low pivot axis on a transverse arm is typically used to reduce the height of the roll centre (e.g. the low-
pivot swing axle). The effect on bump steer is similar to the effect on the semi-trailing arm. The existing
second-order bump steer, if any, is no longer symmetrical about the static position, so some first-order
bump steer is introduced:

eps1 = (RL— Hax)eps2

However, this again assumes that the wheel static steer and camber are specified at the horizontal arm
position. Normally they would be specified at the static position. At the horizontal arm position, these
angles are different, introducing additional effects, and compensating for the above term.

The bump scrub coefficients continue as in Table 11.10.1 with appropriate evaluation of the swing
centre height Hs.

11.12 General Case Numerical Solution

The computer numerical solution of the rigid arm is quite easily performed, given certain standard three-
dimensional coordinate geometry routines discussed in a subsequent chapter. The basic problem is
specified by the static position in vehicle coordinates, Figure 11.12.1, by

(1) the coordinates of a point A on the pivot axis (X, Ya, Za)»
(2) the direction cosines of the pivot axis (/a, M, 114),

(3) the coordinates of a point W on the wheel axis (Xw, Yws> Zw),
(4) the direction cosines of the wheel axis (I, My, Aw).

Other information required includes the track, and the wheel centre position, if this is not already known to
be point W.

Two distinct analyses are required, static (the initial position) and displacement (arm rotated, leading to
bump coefficients).
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A

(Zu Fx,2,)

L)

Figure 11.12.1 Pivot axis through A and wheel axis through W, each axis defined by a point and direction cosines. P is
a methodological second point on the wheel axis.

In a static analysis of the suspension it is desired to obtain:

(1) the pitch centre, pitch arm radius and length;
(2) the swing centre, swing arm radius and length;
(3) the bump scrub rate coefficient;

(4) the roll centre height.

The pitch centre is obtained by intersecting the pivot axis with the vertical longitudinal plane of the
wheel-ground contact point, effectively of the wheel centre. The swing centre is obtained by intersecting
the pivot axis with the vertical transverse plane of the two wheel centres of the axle. The intersection of a
line with a plane requires standard routines discussed in Chapter 15. In special cases, one or other of these
points may be at infinity (e.g. a pure trailing arm or a pure transverse arm).

The bump scrub rate coefficient egscqo follows as Hg/Rg in the general case, and the geometric roll
centre height as 1 Tepscao.

In the displacement analysis, for a rotation of the arm, about the pivot axis, by some specified angle, it is
required to determine

(1) the wheel steer angle,
(2) the wheel camber angle,
(3) the suspension bump,
(4) the local scrub rate,

with a series of such results through the suspension range, a quadratic polynomial curve fit then giving the
bump coefficients. Interchange of the wheel axis angle specification (8, y) and the wheel axis direction
cosines (lw, mw, nw) is required, as given in Table 11.3.1.

The underlying geometrical problem is to rotate one line, the wheel axis, about another line, the pivot
axis. The easiest way to do this is to use two points on the wheel axis, and rotate each point about the pivot
axis, the new point positions then defining the new wheel axis. The first point on the axis can be the point W
as originally specified — typically but not essentially the wheel centre. The second point can be any
reasonable well-separated point, P, say at separation L from point W. Then the initial position of point P is

xp = xw + Lly
yp = yw + Lmw

Zp = Zw+LI’lw
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b

Figure 11.12.2 Generation of local coordinate system for rotation of a point about an axis by a specified angle.

At the scale of vehicle suspensions, it is convenient to use a separation of 1 metre. The direction cosines
of the new axis then follow easily, and thence the wheel steer and camber angles for that bump position.

The residual problem, then, is the rotation of one point about a line by a specified angle. This is easy in
two dimensions, so one approach is to specify a local coordinate system with the circular motion of the
point in a local coordinate plane with perpendicular unit vectors (¥, w) in the plane perpendicular to the
axis &, Figure 11.12.2. The axis unit vector is already known. Drop a perpendicular from the point P onto
the axis, with foot F. The length PF is the arc radius R for that point. One in-plane unit vector can be
determined as being along FP and of unit length. The third unit vector, also in the plane of rotation, can then
be determined by a vector cross product of the two known unit vectors,

i j k
w:(lW7mW7nW):il><i}: lu my Ny
Ly my ny

where the determinant is to be expanded with the usual sign alternations.
For aright-hand rotation by angle 6 about the axis direction, the coordinates of the new position of P are
then given by

xp = xg + [, cos 0+ [, sin 6
Yp = Y + my cos  + my, sin 0

Zp = zZg + ny cos 6 + ny, sin 6

with P rotating in the (¥, w) plane as desired. Hence a new point P is determined.

By doing this for any two distinct points on the wheel axis, the new wheel axis is found, and the steer and
camber angles follow.

In practice, the above is quite easily programmed, given the necessary three-dimensional routines, and
is accurate.

11.13 Comparison of Solutions

Table 11.13.1 shows how the accurate numerical solution compares with the approximate algebraic
expressions from the earlier Tables 11.6.1 (semi-trailing arm) and 11.10.1 (semi-transverse arm). The
approximate expressions are evidently good enough for mental imagery of the effects, and even for general
design use.
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Table 11.13.1 Suspension: rigid-arm analysis, by Rigid Arm.f90 program

Arm type = Pure trailing arm, zero steer and camber

Pivot theta (deqg)
Pivot psi (deqg)
Pivot phi (deg)
Wheel steer (deg)
Wheel camber (deg)

Pitch arm length (m)

epsBS1 (deg/dm)
epsBS2 (deg/dm2)
epsBC1 (deg/dm)
epsBC2 (deg/dm2)

Arm type = Trailing armwith sloped axis

Pivot theta (deqg)
Pivot psi (deg)
Pivot phi (deqg)
Wheel steer (deg)
Wheel camber (deq)

Pitch arm length (m)

epsBS1 (deg/dm)
epsBS2 (deg/dm2)
epsBC1 (deg/dm)
epsBC2 (deg/dm2)

0
0
0
0
0
0

.000
.000
.000
.000
.000
.450

numerical analytic

0.

000

0.000

0.

000

0.000

0.000
0.000
0.000
0.000

numerical analytic

90.000
0.000
5.000
0.000
0.000
0.450

-1.114

0.000

0.000

0.125

-1.111

0.000
0.000
0.123

Arm type = Pure trailing arm, with steer and camber

Pivot theta (degqg)
Pivot psi (deg)
Pivot phi (deg)
Wheel steer (deg)
Wheel camber (deqg)

Pitch arm length (m)

epsBS1 (deg/dm)
epsBS2 (deg/dm2)
epsBC1 (deg/dm)
epsBC2 (deg/dm2)

0
0
0
2
2
0

.000
.000
.000
.000
.000
.450

0.444
-0.050
-0.444
-0.050

numerical analytic

0.444
-0.049
-0.444
-0.049

Arm type = Semi-trailing arm, zero steer and camber

Pivot theta (deqg)
Pivot psi (deqg)
Pivot phi (deqg)
Wheel steer (deqg)
Wheel camber (deqg)

Pitch arm length (m)

72
18

.000
.000
.000
.000
.000
.450

(continued)
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Table 11.13.1 (Continued)

numerical analytic

epsBS1 (deg/dm) = 0.000 0.000
epsBS2 (deg/dm2) = -0.465 -0.444
epsBCl (deg/dm) = -4.139 -4.000
epsBC2 (deg/dm2) = 0.000 0.000

Arm type = Semi-trailing arm, with sloped axis

Pivot theta (deg) = 72.000
Pivot psi (deg) = 18.000
Pivot phi (deg) = 5.000
Wheel steer (deg) = 0.000
Wheel camber (deg) = 0.000
Pitch arm length (m) = 0.450
numerical analytic
epsBS1 (deg/dm) = -1.171 -1.111
epsBS2 (deg/dm2) = -0.461 -0.444
epsBC1l (deg/dm) = -4.139 -4.000
epsBC2 (deg/dm2) = 0.146 0.123

Arm type = Semi-trailing arm, with steer and camber

Pivot theta (deq) = 72.000
Pivot psi (deqg) = 18.000
Pivot phi (deg) = 0.000
Wheel steer (deqg) = 2.000
Wheel camber (deg) = 2.000
Pitch arm length (m) = 0.450

numerical analytic
epsBS1 (deg/dm) = 0.441 0.444
epsBS2 (deg/dm2) = -0.510 -0.494
epsBC1l (deg/dm) = -4.581 -4.444
epsBC2 (deg/dm2) = -0.049 -0.049
Arm type = Pure transverse arm, zero steer and camber
Pivot theta (deqg) 0.000
Pivot psi (deqg) = 90.000
Pivot phi (deg) = 0.000
Wheel steer (deqg) = 0.000
Wheel camber (deqg) = 0.000
Arm radius (m) = 0.600

numerical analytic
epsBS1 (deg/dm) = 0.000 0.000
epsBS2 (deg/dm2) = 0.000 0.000
epsBC1l (deg/dm) = -9.596 -9.549
epsBC2 (deg/dm2) = 0.000 0.000
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Table 11.13.1 (Continued)

Arm type

Pivot theta (deg) =
Pivot psi (deg) =
Pivot phi (deg) =
Wheel steer (deg) =
Wheel camber (deg) =
Arm radius (m) =
epsBS1 (deg/dm)
epsBS2 (deg/dm2)
epsBC1l (deg/dm)
epsBC2 (deg/dm2)
Arm type

Pivot theta (deg) =
Pivot psi (deg) =
Pivot phi (deg) =
Wheel steer (deqg) =
Wheel camber (deg) =
Arm radius (m) =
epsBS1 (deg/dm)
epsBS2 (deg/dm2)
epsBC1l (deg/dm)
epsBC2 (deg/dm2)

= Transverse arm, with sloped axis

0.000
90.000
5.000
0.000
0.000
0.600
numerical analytic
= -0.848 -0.833
= 0.000 0.000
= -9.596 -9.549
= 0.000 0.000

= Pure transverse arm, with steer and camber

0.000
90.000
0.000
2.000
2.000
0.600
numerical analytic
= -0.012 0.000
= 0.029 0.000
= -9.590 -9.549
= 0.000 0.000

Arm type = Semi-transverse arm, zero steer and camber

Pivot theta

Pivot psi
Pivot phi

Wheel steer
Wheel camber

Arm radius

epsBS1
epsBS2
epsBC1
epsBC2

(deg)

(deg) =
(deg) =
(deg) =
(deg) =
(m) =

(deg/dm)
(deg/dm2)
(deg/dm)
(deg/dm2)

15.000
75.000
0.000
0.000
0.000
0.600
numerical analytic
0.000 0.000
-0.220 -0.208
-9.593 -9.549
0.000 0.000

Arm type = Semi-transverse arm, with sloped axis

Pivot theta

Pivot psi
Pivot phi

Wheel steer
Wheel camber

Arm radius

(deg)
(deg)

(deg) =

(deg)

(m)

(deg) =

15

75.
5.
0.000
0.
0.600

000
000
000

000

(continued)
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Table 11.13.1 (Continued)

numerical analytic

epsBS1 (deg/dm) = -0.878 -0.833
epsBS2 (deg/dm2) = -0.221 -0.208
epsBC1 (deg/dm) = -9.593 -9.549
epsBC2 (deg/dm2) = 0.000 0.000

Arm type = Semi-transverse arm, with steer and camber

Pivot theta (deg) = 15.000
Pivot psi (deg) = 75.000
Pivot phi (deg) = 0.000
Wheel steer (deqg) = 2.000
Wheel camber (deg) = 2.000
Arm radius (m) = 0.600

numerical analytic

epsBS1 (deg/dm) = 0.080 0.000
epsBS2 (deg/dm2) = -0.193 -0.208
epsBC1 (deg/dm) = -9.678 -9.549
epsBC2 (deg/dm2) = -0.002 0.000

11.14 The Steered Single Arm

The single-arm suspension has sometimes been used at the front with steering. Two examples are the
Dubonnet type, Figure 1.5.2 and the long transverse arm, Figure 1.6.3. The bump steer depends on the
steering linkage, as described in Chapter 6, but in both cases accurate steering is possible. However, the
steer axis (kingpin) inclination angle and steer axis (kingpin) caster angle, which affect steering feel, are of
importance. The dependence of these on suspension bump can be represented by quadratic expressions in
the usual way:
Ox1 = Okio + £BKIIZS + EBKIZE
Okc = Okco + €BKCIZS + EBKC275
The kingpin inclination angle is generally taken as positive when it slopes inwards at the top, that is,
analogous to the wheel camber angle but of reversed sign. The caster angle is positive when the axis slopes
to the rear as it rises. The kingpin axis is fixed relative to the single arm, so the bump kingpin inclination
coefficients are essentially the same as the bump camber coefficients.

The kingpin axis is approximately vertical, Figure 11.14.1, specified typically by two points, the ball
joints, easily giving the parametric form of the steer axis line. Numerical solution of the moved axis then
follows by the same principles as for the wheel axis. It is apparent that in the case of the transverse arm
there will be large changes of inclination angle, which is undesirable, with small changes of caster angle.
In contrast, the trailing and semi-trailing arms have small changes of kingpin inclination angle but large
changes of caster angle:

COS Oax
EBKIl = ——(
Ra
sin O ax COS Pay
EBKC1 = — = -
R Ra

This large caster angle variation of the steered trailing arm, over 10° in each direction, is a serious
difficulty, and contributed to the early demise of the type in favour of the double-wishbone suspension.
The trailing arm has severe brake dive with the caster change because the arm adds to the body pitch angle
effect. The leading arm, with extreme anti-dive, is less of a problem in this respect.
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Figure 11.14.1 The single-arm suspension with a kingpin axis for steering.

The steered transverse arm was more successful, and was used for many years on small rear-engined
family saloons. To minimise the kingpin inclination variation and the camber change, the arm was made
long, with the pivot axis close to the vehicle centreline, Figure 1.6.3.

11.15 Bump Scrub

In the case of a rigid arm with zero slope of the pivot axis, and no wheel angles, the bump scrub is
particularly simple to analyse. In Figure 11.15.1(a), which is the view along the pivot axis, the distance
from that axis to the central contact point is Lc (not L to the wheel centre), and the angle of this radius
from the horizontal is 6. The radius Rc is slightly different from R, because of the wheel camber, but this
small difference is neglected here.

In the plan view of Figure 11.15.1(b), for a locked-wheel vehicle, the resulting total scrub will be
perpendicular to the pivot axis, along direction AC. For a (small) suspension bump zg, the total scrub is

s = Lc df sinfc = zg tan ¢
The total locked-wheel scrub rate coefficient is therefore

HAX ~ HAx
Rc ~ Ra

&Bscdo,T = tanfc =

This total locked scrub resolves into directions along the prospectively rolling wheel and perpendicular to
it. Normally the small wheel steer angle is neglected, so that the scrub can be resolved more simply into
vehicle X (longitudinal) and Y (lateral) components. The longitudinal scrub coefficient, relevant to
braking, is

HAx sin 9Ax
Ra

£BScd0,X = — EBScdo,T SiNOax =
but

Rp sin 9Ax = RA
SO

HAx
Rp

EBScd0,X = —
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(a) (b)

C Pivot axis

RL Ax
| R, |
Locked scrub R (/AX D
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Figure 11.15.1 Bump scrub of the rigid arm without pivot axis slope.

Similarly, the Y component of the scrub gives a lateral scrub rate coefficient
£BScd0,Y = EBSco,T €08 Oax
giving

HAX
Rs

E€BScd0,Y =

This lateral component is the one relevant to handling and the roll centre height, and the result here agrees
with the simple calculation normally used.

The case of a pivot axis with slope is more complex, Figure 11.15.2. With an arm angular motion dé, the
tangential displacement of the contact point of the locked wheel is

t=1Lcdo
which occurs in the sloping plane perpendicular to the axis. This resolves into

s; = tsinfc¢

in the horizontal plane and
§p = tcosfc
in the sloping plane. This latter part further resolves into

53 = tcos B¢ sin ¢,
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(a)

z = t cosf. cos P,

S,= t cosf_sin &,
S, =t sin 6.

Figure 11.15.2 Bump scrub geometry for a rigid arm with pivot axis slope.

in the horizontal plane and
zg = tcos Oc cos ¢,
vertically. The Y component of the scrub is

Sy = 81 C0SOax + 53 Sin Oax
= tsin O cos Oax + 7 cos Oc sin ¢y, sin Oax

The lateral scrub rate is therefore

Sy tanfccosBax  sin ¢y, sinOax

EBScdo,y = — =
¢ zg COS (b p, COS Py
Now
Hayx Hax Ra tan Gc
= = = cos0ax
Rs  Ra Rs  cosoyy
and
Lep
Sinfpax = —
Rs
SO

Hax Lcp tan d)Ax
EBScd0Y = 4~ + — 5

Rs Rs

_ Hax n Hs — Hax
Rs Rs
Hs

Rs
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where Hg is the height of the swing centre, so the conventional simple expression is applicable even when
the axis is sloped.

Of course, the argument for this property in the case of the force roll centre is very easily established,
because the jacking force must be such that the moment of the lateral force about the axis is zero.
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Double-Arm Suspensions

12.1 Introduction

This chapter deals with suspensions having location by two arms rather than the single-rigid-arm type of
the previous chapter. The most common form of double-arm suspension is the double-transverse-arm
suspension. Another type is the double-trailing-arm type. Example diagrams of these and others are given
in Chapter 1. Strut-and-arm suspensions are also considered here, as variants of the double-arm type.

Double-transverse-arm suspensions are also known as double-lateral-arm, double-wishbone or double
A-arm. The terms ‘wishbone’ and ‘A-arm’ are effectively interchangeable, at least as far as geometric
properties are concerned — these names merely reflect the appearance of the arm, arising from the method
of construction.

The common strut and transverse-arm suspension can, for geometric analysis, be considered as
effectively a double-transverse-arm type in which the upper arm has more or less infinite length. This
places some limitations on the geometric design possibilities, as will be shown.

The earliest cars had rigid front axles which suffered from steering geometry problems, as described in
Chapter 1. To minimise this, the front springs had to be made stiff, to limit suspension movement.
Independent front suspension, with its superior steering geometry, was introduced to allow soft springs
and hence better ride quality whilst retaining good steering properties. The earliest independent types
were the Dubonnet single leading or trailing arm, and the double transverse arm. The Dubonnet type soon
fell from favour. The early double transverse-arm type had equal-length arms, parallel and level. Soon, the
arms were made unequal in length, and placed at various angles to the horizontal in front and side view.
Also, one or both arm pivot axes were sometimes angled in plan view. These changes to the details were
made to obtain certain geometric properties giving desired dynamic properties. This chapter relates the
geometric configuration to the consequent coefficients.

With double-arm suspensions, the steering properties, such as the bump steer coefficients, are
dependent on the details of the steering mechanism, as already discussed to some extent in Chapter 5.
This can be separated out from the basic properties of the arm geometry. Therefore the arm geometry is
used to control the roll centre, the bump camber properties, the anti-dive and the bump caster. Specifically,
the lateral coefficients to be controlled are:

(1) the lateral bump scrub rate egscqo.y giving the roll centre height;

(2) the lateral bump scrub rate variation ggseq1y giving the roll centre movement;
(3) the linear bump camber coefficient egci;

(4) the quadratic bump camber coefficient egcs.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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The longitudinal coefficients to be controlled are:

(1) the longitudinal bump scrub rate egg.q40.x giving the anti-dive;

(2) the longitudinal bump scrub rate variation egscq; x giving anti-dive variation;
(3) the linear bump caster coefficient egcys1;

(4) the quadratic bump caster coefficient egcys).

There are therefore eight coefficients to be controlled. In the analysis process, the geometry is specified
and the coefficients are deduced. In the design process, the values of the coefficients are specified, and the
required geometry is deduced. The appropriate steering can then be added. In practice, of course, there
may be some iteration in this process.

To control the eight variables as desired, the system must have at least eight suitable degrees of
design freedom, four in the transverse properties and four in the longitudinal ones. Basically, these are the
two arm lengths and the two arm angles to the horizontal. As seen in front view, this gives the first four
factors, and in side view the second four. Strictly speaking, every coordinate aftects every coefficient, but
in practice the individual coefficients can be quite closely related to particular individual geometric
features.

12.2 Configurations

Figure 12.2.1 shows a range of basic possibilities for the double-arm suspension. The pivot axis of each
arm may be at almost any angle in plan view, although always approximately horizontal. Also, the arm
lengths may vary considerably. The double transverse arm may have the pivot axes substantially parallel
with the vehicle centreline, as shown, but to obtain certain characteristics one or other arm axis may be
inclined in side view, or even more so in plan view.

The double-trailing-arm suspension seen in Figure 12.2.1(b) is simply a particular type of double arm
with the pivot axes transverse to the vehicle centreline. Figure 12.2.1(c) shows a rarer type, in which the

(a) - (b) (c)
- ot
X &~ b
=~

(d) (e)

Figure 12.2.1 Basic layouts of double-arm suspension: (a) double transverse; (b) double trailing; (c) lower transverse,
upper leading; (d) lower leading, upper trailing; (e) lower trailing, upper leading.
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lower arm is a conventional transverse arm, but the upper arm is leading and has its axis transverse. This is
geometrically, in front view, somewhat like a strut. This is a particularly extreme case of crossed axes.
In Figure 12.2.1(d,e) are seen types with one leading and one trailing arm. These are unusual, but have the
advantage that there is a Watt’s linkage effect which minimises the fore and aft movement of the wheel
centre, so these configurations are sometimes used for driven rear independent suspensions.

12.3 Arm Lengths and Angles

The three-dimensional system can be approached as two separate problems, each in two dimensions only,
one problem being the front (or rear) view controlling the transverse properties, the other being the side
view controlling the longitudinal properties. The correct analysis should really be done in a complete form
in three dimensions, but the two-dimensional approximations are useful for human understanding and for
initial design purposes.

The plane of an arm is defined as the geometric plane passing through the arm pivot axis and the centre
of the ball joint at the arm outer end.

In the vehicle end view, seeing the transverse vertical plane of the unsteered wheel centres, the plane of
the arm intersects this vertical plane to give a line of the arm. The actual pivot axis intersects the vertical
plane at the inner point of the equivalent two-dimensional arm. It is less clear exactly where the outer point
of the equivalent arm should be taken to be. Usually, the front-view position of the ball joint is used. This
may not agree exactly with the plane of the arm, butis usually good enough. The result of this process is an
equivalent front view, with the arms having specific lengths and angles to the horizontal, in the static
position, Figure 12.3.1(a). The two arm lengths and two angles provide four degrees of design freedom,
and prove to be good variables in controlling the desired transverse geometrical properties. However, it
may be more convenient to think in terms of the average arm length and the length ratio or difference, and
of the average angle and the convergence angle, as will be seen. Also, the equations are more readily
expressed in terms of the ‘shortness’ of the links, the reciprocal of their length.

In side view, Figure 12.3.1(b), the plane of the arm may be intersected with the vertical longitudinal
plane of the unsteered wheel centre along the side of the vehicle to give the line of the arm. The pivot axis of
an arm intersects this plane at the point at one end of the equivalent two-dimensional arm. Often this
particular point is at infinity. Nevertheless, its angular position to the horizontal from the wheel is
important. Again, a point must be chosen to represent the ball joint centre, and often this will be the
position of the ball joint as seen in the side view, although again this may not agree exactly with the line of
the arm found from the intersection of the planes. This discrepancy is usually small. The result of this
process is an equivalent side view, with the arms having specific lengths and angles to the horizontal, in the
static position, Figure 12.3.1(b). These two lateral-view arm lengths and two angles provide four further
degrees of design freedom, and prove to be good variables in controlling the desired longitudinal
geometrical properties. However, again, it may be more convenient to think in terms of the average length

(a) (b)

Front view Side view

Figure 12.3.1 Double transverse arms, equivalent 2D mechanism: (a) front view; (b) side view.
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and the length ratio or difference, or link shortness and shortness difference, and of the average angle and
the convergence angle (i.e. angle difference).

It will be apparent from Figure 12.3.1 that the conceptual geometrical properties are related to the
lateral-view arm lengths and angles by a similar process to the way that the lateral properties are related to
the transverse arms and angles. The lateral properties will be examined first, the longitudinal properties
then following easily.

12.4 Equal Arm Length

The earliest double-transverse-arm suspensions, seen in front view, had arms that were simply of equal
length and horizontal when in the static position, Figure 12.4.1. The basic properties are easily found by
inspection, and are shown in Table 12.4.1. The camber is unchanging. The initial bump scrub rate is zero,
implying that the roll centre is initially at ground level. The bump scrub rate variation and associated roll
centre movement depend on the lateral arm length Ly.

Ly

7 AL
Figure 12.4.1 Parallel equal-length arms.

Table 12.4.1 Lateral properties of parallel horizontal double transverse arms

&Bscdo,y = 0

1
EBScdl,Y = — 7
Ly
epc1 = 0
epc2 = 0

12.5 Equally-Angled Arms

If the arms are angled in the static position, whilst remaining parallel, as in Figure 12.5.1, then the camber
is still unchanging with bump. The arm angle is defined to be positive when the ball joint is higher than the

Figure 12.5.1 Angled parallel equal-length arms.
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pivot axis, so increasing positively with suspension bump. With the non-zero static arm angle, the initial
bump scrub rate is also no longer zero, and becomes

£Bscdo,y = —tanfy ~ — Oy

The bump scrub rate variation is as before, depending on the lateral arm length.

12.6 Converging Arms

If the arms are at different angles in the static position, as was shown in Figure 12.3.1(a), having values 0y
and 6y for the upper and lower arms respectively, then the arms converge, or diverge. The arm angle
difference is

Oyp = Oyu —OyL

Usually this convergence is towards the body side of the wheel, giving positive 0yp, but this is not
absolutely invariable. The camber now changes in bump. There is a swing centre no longer at infinity.
Consider the simple symmetrical case in which the average angle of the arms is zero, such that the upper
arm is inclined at 6yy = + 3 6yp and the lower arm at 6yy = — 1 6yp, Figure 12.6.1(a). The arms are of
equal length Ly. The height difference of the outer ball joints is Hgjp.

The divergence angle is given, approximately, in radians, by

Hgp
Oyp =
YD = p
so the swing arm radius is approximately
H,
Rg — 11BID
Oyp

Figure 12.6.1(b) shows the lateral movement of the ball joints for a bump zg. The resulting bump camber
angle is

2zg tan % Oyp s Ovp

/B = Hgp ~ Hep
1
€)) (b) 2z t'fmT‘QYD
1 S 1
T 36 0 %0
YD
Hyp iZS/‘|7°

1

P QYD

< Rs >|

AN

Figure 12.6.1 Converging arms.
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Substituting for yp, then

’B = Rs

and the consequent linear bump camber coefficient is

EBCl = — 5 X — 4 —
Rs Hpip

Therefore the linear bump camber coefficient may be adjusted by control of the convergence angle of the
arms, or, amounting to the same thing, by the length of the swing arm. If the convergence angle is negative,
then the arms converge outwards, the swing arm radius is negative, and the linear bump camber coefficient
is positive.

For unequal arm angles from horizontal, and small angles, continue to take the difference of the arm
angles.

In Figure 12.6.1(a), it is apparent that converging the arms will also affect the bump scrub rate (roll
centre height), but subsequently this may be changed independently as desired by adding the same slope to
both arms.

12.7 Arm Length Difference

To examine the basic effect of arm length difference, consider the simple case of horizontal arms, as in
Figure 12.7.1. It is usual for the upper arm to be the shorter one. Figure 12.7.1(b) shows the bumped
position, with associated lateral movement of the ball joints because of the arm inclinations. Then

Yu = Lyu(l — COS Byu)

(a) (b)
L‘r'U
!
LYI.
7 7777777777 77777777777 7777777777

(c) v

Figure 12.7.1 Double transverse arms with arm length difference.



Double-Arm Suspensions

233

Approximating the arm angle by

Zs
Oyu = Ivo
and using
22
cosByy ~ 1 —%OéU =1- 2L§(U
then
w=gm ad w=g
Consequently, the bump camber angle is
B = - Rt
Hgjp
1 1 1 5

_ 2
2Hgip \ Lyu LyL

In terms of the arm shortness S = 1/L, this is

1

75 = — = (Syu — Sy.)73
’B ZHBJD( YU YL)Zs

Using the arm shortness difference
Syp = Syu — SvL
the bump camber angle is simply expressed as

Syp
_ P
2Hgp

YB =

Hence, the arm length difference causes a quadratic bump camber coefficient

Syp
2Hgjp

€BC2 = —

and the arm length difference may be used to control this aspect of the geometry as required. A negative
quadratic bump camber coefficient is usually desired, in which case Syp must be positive, requiring the

upper arm to be the shorter one.

12.8 General Solution

The foregoing equations are a useful guide to the effect of various geometrical changes, but with arm
convergence the bump scrub effects are not handled accurately enough for design purposes, so an
improved analysis will now be given here. However, the resulting equations are more complex, and the
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Figure 12.8.1 Double transverse arms, general case, front view of right wheel or rear view of left wheel.

effects of design changes are not as clear as in the previous very simple equations. Figure 12.8.1 shows the
geometry, which now simultaneously includes different arm lengths, different arm angles, the ball joint
static vertical spacing Hgjp, and the mean static ball joint height Hgjy.

The individual static-position heights of the upper and lower outer ball joints are Hgyy and Hgjy .
Table 12.8.1 summarises the definitions and relationships for related variables. The values of Hgyy, Hpj,
Hgjs, Hgjp, Heym and fgyy are constant for a given design. Their use simplifies subsequent equations.

The front-view equivalent link lengths are Ly and Ly . For convenience in the following equations the
link shortnesses are

1 1

Syu = —; SyL =-—
Lyy Lyp

Table 12.8.1 Outer ball joint height relationships

The sum and difference are

Hpjs = Hpyu + HeiL
Hgjp = Hpyu — HpL

The individual ball joint heights are

Hpyu = 4 (Hpys + Heip)

Hgy = 3 (Hess — Hep)

The mean outer ball joint static height is

Hgm = 5 Hgss

The ball joint height factor is the ratio of the sum to the difference:

Hpjs
Hgip

fBJH =

which, more explicitly, is

_ Hpyu + HpyL
Hpyy — HpyL

fBJH

Note that fyy is not the ratio of the height of the individual ball joints.
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Table 12.8.2 Arm angle relationships

The static arm angle sum and difference are

Oyso = Oyuo + OyLo
Oypo = Oyuo — OyLo

At suspension bump position zg, the link angles become

Oyu = Oyuo + Syuzs
OyL = OyLo +SyLzs

The sum and difference of these angles are

Oys = Oyy + OyL
Oyp = Oyu —OyL

The individual angles are

1(6ys — Oyp)

1(6ys—0yp)

By substitution, the sum and difference are

Oys = Oyso + Syszs
0yp = Oypo + Sypzs

The shortness sum and difference are

Sys = Syu+SyL
Syp = Syu —SyL

The initial (static position) link angles are 6yyo and Oy o, positive as shown in the figure, clockwise. These
arm angles are defined positive such that they increase in bump. Table 12.8.2 summarises useful arm angle

equations.
In Figure 12.8.1, the long triangle gives, approximately,

Hpgjp = Rs Oyp
so the swing arm radius is

H; H;
Rg = BID _ BID

6yp  Oypo+SypZs
The linear bump camber coefficient is

. 1 Oypo
BCl = ——— = —
Rso Hpgjp

As before, the quadratic bump camber coefficient is

Syp
2Hgjp

€BC2 = —



236 Suspension Geometry and Computation

Table 12.8.3 Double transverse arms, summary of two-dimensional
lateral equations

&Bsedo,y = 3 (fa11 Oypo — Oyso) (12.8.1)
eBsedl,y = 5 (famSyp — Sys) (12.8.2)
1 Oypo
- = _ 12.8.
€BCl1 Rs Hom (12.8.3)
Syp
== 12.8.4
epe 2Hgp ( )

The height of the swing centre is
Oys
Hs = Hgm — 5 OysRs = Hpim — 3 Hpip ——
6vp
This gives

1 GYSO + SYSZS
Hs = Hgyy — = Hpyp | ———22
S BIM P BID (OYDO n SYDZS

The local lateral bump scrub rate (i.e. at the local bump position zg) is

. _ Hg _ Hgm 1 0
BSdY = R Rs 5 fvs

= 3 fom(Oypo +Sypzs) — 3 (Oyso + Syszs)
= {% JSoin Oypo — %GYSO} + {% famSyp —3Svs }Zs

However, the bump scrub rate is

€BScd,Y = €BScd0,Y + €BScdl,YZS

so the two bump scrub rate coefficients are solved, as summarised with earlier results in Table 12.8.3.

12.9 Design Process
Given a design specification for the coefficients, the equations of Table 12.8.3 must be solved for the front-

view geometry. One possible design sequence is:

(1) Use epc; to give Oypo;
(2) Use egscdo,y to give Oyso;
(3) Use epc» to give Syp;

(4) Use EBScdl,Y to give Sys.

In more detail:

(12.8.3): 6ypo = —Hpipenci
(12.8.1): Oyso = fayu Oypo — 2€Bscdo,y = —2(Hpimepc1 + €BScdo.y)
Oyuo = 5 (Byso + Ovpo)

Oyio = % (6yso — Bvypo)

which completes solution of the arm angles.
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The link lengths require the other two equations from Table 12.8.3:

(12.8.4): Syp =—2HpjpeRC2
(12.8.2): Sys = femSyp — 2&Bscdl,y = —2(Hpss&pca + Bsedl,y)

The actual arm shortnesses and lengths are then

Syu = 5 (Svs +Syp)

Sy = 3 (Sys — Syp)

and the actual arm lengths are just the reciprocals of the shortnesses. This completes the solution of the
equivalent link lengths in front view.

Table 12.9.1 Double-wishbone design example

Double Transverse Arm Analysis - Analytic:

Data Design Requirement: Arm angles Arm lengths

HBJU =0.39000 m eBScd0 = 0.10000 - - - thYD= 7.21927 deg SYS=8.60000-/m
HBJL =0.21000m eBScdl =-2.50000 -/m thYS =12.60507 deg SYD=1.08000-/m
HBJS =0.60000m eBCl =-0.70000 rad/m thYU= 9.91217deg LYU=0.20661lm
HBJM = 0.30000m eBC2 =-3.00000 rad/m2 thYL= 2.69290deg LYL=0.26596m

HBJD =0.18000m
fBJH=3.33333 - - -

Table 12.9.1 gives example numerical values, in which, from the specified coefficients, the equations of
this section are used to obtain the geometry. The equations of Table 12.8.3 can then be used to obtain the
coefficients of the proposed geometry, as a check, to compare the specified coefficients with the calculated
ones for the derived design. This check shows that the equations are consistent. However, it does not prove
them physically accurate, because of the modelling approximations, for example, the neglect of the lateral
position of the ball joints, and small-angle approximations. Nevertheless, these equations are useful for
design purposes, and the design may subsequently be refined by accurate numerical computer analysis in
three dimensions.

12.10 Numerical Solution in Two Dimensions

Given a two-dimensional equivalent front-view linkage mechanism, as in Figure 12.10.1, there are several
possible solution methods for a precise solution. In general, there is no explicit solution for a specified
bump of the wheel-to-road contact point E. Therefore the practical approach is to move one arm (e.g. the
lower arm AB) by an angle, and solve all points from that, including the suspension bump zg = zg and
scrub s = Ayg. Using a suitable range of arm angles, quadratic curves can be fitted to y(zs) and s(zs) to
obtain the bump camber and bump scrub coefficients, and thence the bump scrub rate coefficients.

The actual geometrical solution may proceed in several ways. The simple length-and-angle approach
begins by an initial position analysis to obtain the static position lengths and angles, including 6 Ag¢, Opo,
and Oggr (which is unchanging). Also needed are the unchanging lengths Lag, Lgp, Lcp and Lgg.
The lower arm is displaced by angle ¢,5. The procedure for a given displacement is given in
Table 12.10.1.
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Figure 12.10.1 Double transverse arm, equivalent linkage mechanism for numerical solution.

Solving for at least three positions, over a suitable range of lower arm angle to give a realistic suspension
bump range, fit quadratic curves to y(zs) and s(zs) giving the bump camber coefficients egc; and epco, and
the lateral bump scrub coefficients eggsc1 y and egsc2.v- Then, also, the bump scrub rate coefficients are
derived from the bump scrub coefficients by

€BScd0,Y = €BScl,Y

EBScdl,Y = 28Bsc2Y

as explained in Section 7.9.

Other solution methods are possible, and may be preferable, particularly if a good library of two-
dimensional geometry subroutines is available.

Given points B and C, and lengths Lgp and Lcp, then upper the ball joint point D may be found by the
intersection of two circles. If two circles do intersect then there are, in general, two intersections, and the
solution of this uses a quadratic equation, producing two solutions, so the correct one must be selected.

In the static analysis, a point F, the foot of a perpendicular from point E onto DB extended, may be
formed, giving lengths Lgr and Lgg. In the displaced position, point F follows easily from DB produced by
a simple factor, and FE may be stepped along the perpendicular.

Table 12.10.1 Numerical solution of double transverse arms, two-dimensional front view for one position

(1) Specify lower arm angular displacement ¢ 5.
(2) OaB="0aB0 + Pap-
(3) Calculate yg and zg from ya, za, Oap and Lag.
(4) Calculate Lyc.
(5) Obtain angle 6pc using atan.
(6) Use cosine rule for angle Ocgp, in triangle CBD, all sides known,
(7) 0sp="06sc + OcBD-
(8) The bump camber angle is y5 = 0p— Oppo.
(9) The angular position of EB is 0gg = Ogpo + -
(10) Obtain yg and zg from yg, zg, 6gg and Lgg.
(11) Suspension bump is zg = zg.
(12) Suspension scrub is § = yg — ygo.
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Table 12.10.2 Comparison of coefficients obtained

Data:
Y Z
Upper arm outer BJ = 0.6100 0.4200 m
Lower arm outer BJ = 0.6300 0.1800 m
Upper arm length = 0.2000m
Lower arm length = 0.3000m
Upper arm angle = 8.0000 deg
Lower arm angle = 1.0000 deg
HBJS = 0.6000m
HBJM = 0.3000m
HBJD = 0.2400m
fBJH = 2.5000---
Coeff Analytic Numerical
eBScd0 0.0742 0.0713 ---
eBScdl -2.0833 -1.9830 -/m
eBC1 -0.5091 -0.4896 rad/m
eBC2 -3.4722 -3.1541 rad/m2

These alternative methods are not particularly superior in two dimensions, but that style of approach is
good in the more complex three-dimensional analysis. All the numerical methods are mathematically very
accurate, if implemented correctly, but there may still be approximations in the conversion to an equivalent
two-dimensional problem.

Table 12.10.2 compares the results obtained by the algebraic and numerical methods. The average
discrepancy in this case is only about 6%. It may be concluded that the algebraic method is useful, but
not precise because of the modelling assumptions, for example neglect of the ball joint lateral
position from the wheel centre plane, a detail which is easily included in the numerical model. The
algebraic model could be made more accurate, of course, but then the clarity of the equations would
be reduced.

12.11 Pitch

As in the case of the lateral properties, which can be analysed approximately in two dimensions using an
equivalent front view, the pitch properties, namely bump scrub (anti-dive, etc.) and bump caster variation,
can be analysed approximately in a two-dimensional equivalent side view, as in Figure 12.11.1. The rear
effective pivot points of the arms are the points at which the pivot axes penetrate the longitudinal vertical
plane of the wheel centre.

The mathematical analysis of the side view follows very much along the lines of the front-view analysis,
but with changes of notation and some changes of sign. The variables shown are the ball joint height
difference Hgjp, the mean ball joint height Hgjy, the upper arm equivalent longitudinal length Lxy and
angle Oxy, the latter positive as shown in the figure and increasing in bump, and the lower arm length Ly
and angle 60x; .
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Figure 12.11.1 Equivalent two-dimensional side view of double transverse arms.

The steer axis caster angle is positive when the steer axis slopes backwards as it rises, which is the
opposite of the camber angle when comparing Figures 12.8.1 and 12.11.1. The effective arm length is now
the pitch arm radius Rp instead of the swing arm Lg. The linear bump caster coefficient becomes

1 Oxno
Rp  Hpp

EBcasl —

which has different signs from the equivalent expression for the transverse variables. The second bump
caster coefficient also loses the minus sign:

Sxp

EBcas2 =
2Hgp

The resulting analysis equations are summarised in Table 12.11.1, which has sign changes in the last two
equations, in which &g, appears instead of epc.

The pitch design problem begins with a specification of the desired longitudinal coefficients, with use of
the equations of Table 12.11.1 to solve the geometry. Again, this is substantially the same as for the
transverse analysis:

(12.11.3): 0xpo = HpipEBcast
(12.11.1): Oxs0 = famm Oxpo — 26Bscdo.x = 2(HpjMEBeast — €BScd0.X )
with

Oxvo = ;5 (Oxso+ Oxpo)

Oxro = 3 (Oxso — Oxpo)

The two-dimensional effective link lengths are solved by

(12.11.4): Sxp = 2HBDEBcas2
(12.11.2): Sxs = femSxp — 2€Bscd1 x
with

Sxu = %(st + Sxp)

Sxr = 5 (Sxs — Sxp)

and the lengths follow immediately as reciprocals.
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Table 12.11.1 Double transverse arms, summary of two-
dimensional longitudinal equations

eBscdo.x = 3 (faim Oxp0 — Oxs0) (12.11.1)
&Bscdl x = 3 (fBSxp — Sxs) (12.11.2)
I Oxpo
=—_—= 12.11.
EBcasl RP HBJD ( 3)
S
EBeas2 = 21;;’?]) (12.11.4)

In a practical design it may be that the secondary coefficients are set to zero,

epsedix = 0
EBcas2 — 0

in which case

Sxp=0;  Sxs=0
Lxy =  LxL =o°

The infinite lengths in side view mean that the pivot axes are parallel to the vehicle centre plane. The angles
are still evaluated as above, and the axes will generally be inclined to the horizontal.

As an alternative to the analytical solution in pitch, a two-dimensional numerical solution is a
possibility, Figure 12.11.2, similar in general terms to the front view. The lower arm is rotated from
the static position and the consequent caster angle, longitudinal scrub and suspension bump are solved and
curve fitted for coefficients. The difference is that the ground contact point is the point initially directly
below the wheel centre, and for longitudinal scrub analysis the wheel must be treated as locked in rotation.
The angle FBE will normally be positive as shown, in the other direction from in the front view, and the
perpendicular EF is also probably in the other direction. The suspension bump evaluation method is to
determine the wheel centre bump and to subtract the wheel radius. This illustrates a limitation of the two-
dimensional modelling, as the side-view bump calculation does not allow for variations of camber angle.
In general, the solution proceeds by the same principles, with the same possible methods.

Figure 12.11.2 Side view of double transverse arms for two-dimensional numerical analysis.
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In the case of front anti-lift traction analysis, or anti-dive braking with driveshafts transmitting the
torque, as for inboard brakes, then the effective longitudinal bump scrub of the wheel centre must be
investigated, using similar methods.

12.12 Numerical Solution in Three Dimensions

The two-dimensional solutions are generally quite good, but not strictly correct, and ideally a three-
dimensional solution should be used. For the general case, with pivot axes at various angles, algebraic
analysis is hardly practical other than after reduction to approximate two-dimensional equivalents, so
computer numerical analysis is the practical accurate solution.

As the two-dimensional analyses show, each suspension arm will have values for the lengths and initial
angles in front and side views (i.e. Lxy ., Ox1., Lxu, Oxu)- Given the ball joint position, the four variables
dictate the pivot points of the arm as seen in front-view and side-view planes, so the arm axis in general
runs somewhat diagonally to give both equivalent arms a finite length. The arm geometry is defined by the
ball joint coordinates and by the arm pivot axis. The physical arm itself may vary in shape and
construction, possibly being bent. Also, the part of the pivot axis met by the arm may vary considerably,
to meet packaging requirements or to obtain certain compliance characteristics.

The method of solution of the three-dimensional problem is given in Table 12.12.1. If the suspension
position is required for some predetermined suspension bump then iteration must be used to find the
corresponding arm angle.

In addition to the analysis of Table 12.12.1, it may be desired to make further analysis of connected
components (e.g. pushrods, rockers, spring length, or damper length) using similar techniques.

Exploring the steps of Table 12.12.1 in more detail, rotation of the lower arm requires a local
coordinate system with one axis along the arm pivot axis, one axis radially outwards to the initial ball
joint position, and one axis perpendicular to those two, found by vector cross products, this bringing the
arc of the ball joint into a plane with two of the axes, allowing a two-dimensional calculation of the
rotation with subsequent conversion into the basic body axes. An alternative approach is to specify a
height for the lower ball joint above the datum plane, from which the complete lower ball joint
coordinates can be solved.

Solution of the upper ball joint involves satisfying the arc of the upper ball joint about the upper arm
pivot axis and the spacing between the wheel carrier ball joints. The best approach is to use equations
satisfying the three known lengths, two from known points on the upper arm pivot axis, one from the
known position of the lower ball joint, selecting one of the two resulting solutions. This ‘tripod’ problem is
a useful general purpose subroutine.

Table 12.12.1 Three-dimensional numerical solution of double transverse arms

(1) Rotate the lower arm about its axis, giving the lower ball joint position.

(2) Solve for the upper ball joint according to the upper arm and the wheel carrier.

(3) Solve for the track-rod end balljoint according to the steering arm, the rack end position and track-rod
length.

(4) Solve for the wheel centre and suspension bump.

(5) Solve for the locked-wheel contact point scrub.

(6) From the wheel carrier position, solve the wheel axis direction cosines.

(7) Deduce the camber angle, caster angle, steer angle, lateral scrub, longitudinal scrub, and suspension
bump.

(8) Do several positions through the suspension range, and curve fit quadratics to give the relevant
coefficients.
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Solution of the track-rod end/steering rod ball joint is another tripod problem, with known points at the
wheel carrier ball joints and at the rack end ball joint, with three known lengths.

Next, the position of the wheel centre and locked-wheel contact patch points must be found. These
could be treated as another tripod problem, based on the now known two-steer-axis ball joints and the
steering-arm end ball joint, and three known unchanging lengths. However, certainly in the case of the
contact point, it is possible that the point to be found could fall exactly in, or very close to, the plane of
the known points, in which case the tripod method is likely to be troublesome. Instead, a better method
is to perform an initial analysis dropping a perpendicular from the contact point into the plane of the
known three base points, giving a foot point F and an out-of-plane perpendicular length. The
coordinates of F are a linear function of the coordinates of the three plane-defining points, with
factors that are unchanging and determined in the initial analysis. When the wheel upright has been
moved, the new point F follows easily, and the contact point can be stepped out on the new
perpendicular to the plane.

From the wheel centre, the lowest point of the wheel may now be deduced, giving the suspension bump.

Solution of the wheel axis requires solution of the new position of two points on that axis. The initial
analysis will prepare the information for this. This can be approached as two tripod problems, or, better,
one of the points can be that on the axis and in the plane of the known three points. The three fixed lengths
to one point for a tripod solution are unchanging and determined at the initial analysis.

As so often with computer programming, the devil is in the detail. Here are described the general
approach and principles. Chapter 15 describes some useful three-dimensional geometrical routines.

12.13 Steering

The properties of the steering have been described in general terms in Chapters 5 and 6. For a double-arm
suspension, the resulting bump steer can be expressed in terms of the linear and quadratic coefficients as
explained.

In two dimensions, it is also possible to actually calculate the ideal point coordinates for the rack end. In
three dimensions, it is possible to calculate an ideal axis for the rack end. The suspension is moved in
bump, producing three steering arm end positions, Py, P, and P53, with lower arm angles corresponding to
suspension bump positions approximately —0.10 m, static, and + 0.1 m. The wheel steer angle is held at
zero (treating the rack as disconnected), and the three-dimensional coordinates of the steering arm end ball
joint are determined for each position.

These three steering arm end points define a plane. The ideal axis is perpendicular to this plane, so the
normal to the plane gives the direction cosines of the ideal axis. Now set up a coordinate system (u, v, w)
with origin at P, Figure 12.13.1. Axis w runs normal to the plane. Axis u runs in the plane from P, towards
P;. The third axis v is in plane, perpendicular to the first two. This gives two axes in the plane of the three
points. The ideal point is within the plane, being the centre of the arc through the three points, and so is
easily solved in two-dimensional geometry. Convert the known point coordinates of Py, P, and P to (u, v)
coordinates. The centre must lie on the perpendicular bisector of a chord, so

Uc = %ul
The radii P,C and P3C are the same, so, simply by Pythagoras’ theorem,
R = ué + vé = (uc — u3)2 + (ve — V3)2
SO

2.2
U3+ —2uzlc

Ve
2V3
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Figure 12.13.1 Determination of the ideal point in the plane of the three bumped steering arm end points.

and the arc radius R, the ideal track-rod length for a rack end at the ideal centre, then follows from the
previous equation.

The coordinates of the ideal centre can then be converted to vehicle body coordinates. This point then,
with the axis direction cosines, defines the ideal rack-end axis.

In the above investigation the arc of the steering arm end is not strictly in a perfect plane. Therefore, it
may be preferred to obtain track-rod coordinates for more bump positions, and to fit a plane by statistical
error minimisation techniques.

Also, if the two arm pivot axes are not parallel, then the ideal axis is not really a straight line.
In particular, this occurs with the crossed axes of the one-leading-arm one-transverse-arm suspension,
shown in Figure 12.2.1(c). In that case it may be worthwhile to obtain the ideal rack end position directly
for various rack longitudinal positions.

The purpose of these investigations is, of course, to see the implications for rack length and ideal rack
vertical position if it is moved longitudinally to alter the Ackermann factor.

12.14 Strut Analysis in Two Dimensions

The strut-and-arm suspension, commonly just called a strut suspension, typically uses a basically
transverse lower arm, with the upper arm and wheel carrier (wheel upright) replaced by an integrated
unit of wheel carrier, slider and spring—damper unit, acting on an upper trunnion where it connects to the
inner part of the bodywork. The upper joint is areally a combination of the slider with a ball joint, or rubber
bush, the latter allowing various angular movements. The combination acts geometrically like a trunnion,
which s a slider passing right through a swivel joint (in two dimensions) or ball joint (in three dimensions),
as seen in Figure 12.14.1. The steering action normally acts about a steering axis passing through the lower
ball joint and the trunnion point. However, a separate steering axis could be provided, as used to be done on
some double-transverse-arm suspensions.

The two-dimensional analytical methods applied to the double-transverse-arm suspension are easily
adapted to the common strut suspension. The one issue to be resolved is how to find the equivalent upper
arm. The plane of the equivalent upper arm is through the trunnion point and perpendicular to the strut
slider centreline. Intersecting this with the transverse vertical plane gives the equivalent arm, as usual, but
with length yet to be determined. Note that the strut slider is generally not aligned with the ball joint on the
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Figure 12.14.1 Strut-and-arm suspension, basic front-view geometry.

lower arm, so not coinciding with the steering axis which passes through the two joints, Figure 12.14.1.
The lower arm angle is vy, positive when the outer ball joint is higher than the axis, but usually negative in
the static position.

The upper arm length can simply be taken effectively as infinite, that is, as having zero shortness.
A slightly better equivalent is to take it to be equal to the swing arm length in front view and the pitch arm
length in side view. In Figure 12.14.2, AB is the lower arm, E is the foot of the perpendicular from B onto
the slider centreline, DE is the slider centreline, and BD is the steering axis through the lower ball joint B
and trunnion centre D. Figure 12.14.2(b) shows the velocity diagram for a lower arm angular velocity .
The fixed points are A and C. The line ab has length value (units m/s)

ab = QLAB

Position Velocity

Figure 12.14.2 Basic strut-and-arm geometry for analysis of the effective upper arm length.
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Table 12.14.1 Strut-and arm suspension, summary of two-dimensional
lateral equations

eBsedo,y = 3 (fm Oypo— Oyso) (12.14.1)
Hgjp
Rs = 12.14.2)
57 Bymo (
1
E€BC1 = T Re (12.14.3)
S
Svu =g (12.14.4)
EBScdlY = % (feyaSyp—Sys) (12.14.5)
Syp
= _ 12.14.6
eBe2 2Hgp ( )

at the angle ¢y = — fyr.. The line cd is perpendicular to CD, and parallel to slider DE. Line bd is
perpendicular to BD. Triangle cbd is similar to CBD. The radius of the movement arc of D, the velocity of
D and the angular velocity of ED are related by

Vb = wepRp

The angular velocity is

ed
WED = ——
Lgp
The radius of the arc is therefore
Vi dL
Rp =2 = SCCED Lcp
WED ed

so the effective centre of the arc is at C, on the line BA, and the effective length of the upper arm is
LYU ~ RS

Adapting Table 12.8.3 with appropriate modifications for the upper arm gives Table 12.14.1 for the strut-

and-arm suspension lateral properties.
Note that Syp = Syy — Sy will inevitably be negative in practice, so g, Will be positive. Hgjp is much

larger than for a conventional double-wishbone suspension.
The longitudinal properties can be analysed in the same way, with similar adaptations to Table 12.11.1,

giving Table 12.14.2.

Table 12.14.2 Strut-and-arm suspension, summary of two-dimensional
longitudinal equations

£nsedox = 3 (fam Oxpo— Oxs0) (12.14.7)
H
p = HBJD (12.14.8)
XDO
1
EBcasl — Rf (12.14.9)
P
Sxu = — 12.14.10
XU =R ( )
EBScdl X = % (fimSxp—Sxs) (12.14.11)
S
EBeas2 = 2> (12.14.12)

2Hgjp
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12.15 Strut Numerical Solution in Two Dimensions

A computer numerical analysis can be made of the strut-and-arm suspension in two dimensions, using a
geometrically correct solution, without approximations for the upper arm. The technique required is
different from the double-arm suspension. Figure 12.15.1 shows the geometry. AB is the lower arm, with
pivot A and outer ball joint B, ED is the slider axis, at front-view slider initial angle 0yg; , with E the foot of
the perpendicular from B. Point F is the wheel contact point.

F Ope Y

Figure 12.15.1 Strut-and-arm geometry for front-view two-dimensional numerical solution.

A preliminary analysis is made of some initial or unchanging lengths and angles, as in Table 12.15.1.
Point B may be inboard or outboard of E, which must be accounted for, for example with a variable Igpg,
effectively representing a sign of angle Oppg. The solution for a given lower arm angle proceeds as in
Table 12.15.2.

When implemented correctly, this is numerically very accurate, although still subject to the two-
dimensional approximations from the real three-dimensional problem. The camber angle and scrub for a
series of lower-arm angles can then be curve fitted against the bump to obtain the various coefficients. The
results may be compared with the results of the analytical method, as in Table 12.15.3.

The comparison shows that the approximated analytic expressions are not very accurate, but do give a
good qualitative estimate and understanding of the consequences of design changes.

Table 12.15.1 Strut-and-arm two-dimensional front view, numerical
analysis initial calculations

(1) 6yro lower arm initial angle

(2) Lag lower arm length

(3) (Y,zg), hence Lgg

(4) Ogpo=m/2 —OysL

(5) Lgg to the wheel contact point

(6) Ogpo initial angle of FB

(7) Ispe= + 1 or —1 as BD steeper than ED or not
(8) Initial ygq (half track)
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Table 12.15.2 Strut-and-arm two-dimensional front view, numerical
solution, one position

ey
@
3
“
&)
(©)
@)
®
©))
(10)
an

Specify lower arm angular displacement ¢ .
0AB = 0aB0 + PpR-

Calculate (yg,zg) from ya, za, Lag and 0 p.
Obtain Lgp (D fixed).

Obtain angle Ogp from coordinates of B and D (use atan2).
Obtain Ogpg = asin (Lgg/Lgp).

0ep = 6p—IBDE OBDE-

The bump camber angle is Y5 = 6gp— Orpo.
Obtain Opg = Orpo + V5.

Contact point scrub is yp = yg + Lppcos Opg —Yro-
Contact point bump is zg = zg—Lpgsin Ogs.

Table 12.15.3  Strut-and-arm comparison of two-dimensional analytic and numerical solutions

Strut-and-Arm, summary comparison table:
Data:
Y Z
Trunnion centre D (m) 0.482 0.710
Lower arm outer B (m) 0.606 0.19%06
Lower arm length= 0.280m
Lower arm angle = -1.000 deg
Track = 1.400m
Slider angle = 16.000 deg
Results:
Analytic Analytic Numerical
LU=LS LU = infinity
eBC1l rad/m -0.577 -0.577 -0.499
eBC2 rad/m2 2.913 3.474 2.075
eBScd0 - == 0.131 0.131 0.111
eBScdl m-1 -4.713 -4.933 -4.162

12.16 Strut Design Process

Application of the two-dimensional analytical equations of Table 12.14.1 to design of a strut-and-arm
suspension is very revealing. Whereas the double-arm suspension is very adaptable and can be specified to

give almo

st any desired coefficients, the strut-and-arm suspension is very limited because of the long

equivalent upper arm. The arm shortness difference

Syp = Syu — SyL

is negative, so the quadratic bump camber coefficient

Syp

EBC2 = — 55—
2Hgjp
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isinevitably positive, whereas negative values are favoured for double-arm suspensions. Also, control of the
bump scrub rate variation is effectively lost, this, although being desirably negative, is much too large in
magnitude, so control of the roll centre movement is poor. Even the linear bump camber coefficient

1 __bvmo
Rs Haip

€BC1 = —

may be a problem, because the ball joint height difference Hg;p is larger than for the double-arm suspension,
so to achieve a desirable swing arm length of about 1.5 m requires a very large arm angle difference 6ypo.
This indicates need of a very steeply inclined slider, which is impractical for other reasons — for example, the
excessive steering axis inclination angle is detrimental. This could be overcome by using a separate steering
axis, but at extra cost. The only coefficient not really compromised is the linear bump scrub variation, so at
least the initial roll centre height can be fixed correctly. However, the lower arm may be set at a steeper angle
than is otherwise desirable to give a higher initial roll centre, and to reduce the swing arm length.

Geometrically, then, the strut-and-arm is a poor suspension configuration, and is used rather because it
has a good motion ratio for the spring and damper, spreads the loads into the body well, and is economic in
production.

Some manufacturers have sought to combine some of the benefits of both systems by using a double-
arm system for the geometry, with the spring and damper acting, with pivotal connection, down onto the
top of the upright or onto the end of the top arm (see Figure 1.6.8).

In sports and racing cars, the adaptability of the double-arm suspension is highly valued, and the
geometric limitations of the strut-and-arm are a significant problem. In some cases conversions are made,
often retaining the existing lower arm, using a subframe on each side, mounted at the lower arm and at the
strut top, providing the mounting points for a new, upper, arm. This will cause problems with the steering
unless the rack is repositioned and the length is corrected. This is not necessary in the special case of arack
which is located immediately in line with the lower arm.

12.17 Strut Numerical Solution in Three Dimensions

The strut-and-arm suspension can be analysed numerically in three dimensions by similar methods to the
double-arm suspension, with some detail changes because of the slider trunnion (compare Table 12.17.1
with Table 12.12.1).

Table 12.17.1 Outline three-dimensional numerical solution of strut-and-arm suspension

(1) Rotate the lower arm about its axis, giving the lower ball joint position.

(2) Calculate the length between the lower ball joint and the trunnion centre.

(3) For the wheel carrier, using the unchanging distance of the lower ball joint from the slider axis,
calculate the slider length from the foot of the perpendicular (from the lower ball joint) to the trunnion
centre.

(4) Use a tripod solution based on the lower ball joint, the trunnion centre and the rack-end ball joint, with
the three known lengths (two unchanging). This solves the foot of the perpendicular, hence the slider
(wheel carrier) position.

(5) Solve for the wheel centre, and thence the lowest wheel point and bump.

(6) Solve the position of the contact point of the locked wheel.

(7) From the wheel carrier position, solve the wheel axis direction cosines.

(8) Deduce the camber angle, caster angle, steer angle, lateral scrub, longitudinal scrub, and suspension
bump.

(9) Analyse several positions through the suspension range, and curve fit a quadratic to give the relevant
coefficients.
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Figure 12.18.1 Modified double trailing arms, front view, effective arm length infinite.

12.18 Double Trailing Arms

The double-trailing-arm system, as shown in Figure 1.6.2, has long been used at the front of small passenger
cars, often with transverse torsion bar springing, sometimes with a spring acting down onto the top arm.

In the common form of this suspension, the two pivot axes are parallel to one another, and perpendicular
to the vehicle centre plane, which gives a very simple geometry. In front view the wheel simply moves
vertically in bump. There is no camber and no lateral scrub. In side view, the trailing arms are parallel,
giving zero caster change. The arms are of the same length, so the quadratic caster coefficient is also zero.
There is quadratic longitudinal scrub.

A more interesting version is also possible, in which modifications are introduced to achieve desired
coefficients. First, in front view, the arm axes may be inclined, Figure 12.18.1.

The lateral length factors are still

co g

Lyy = o0;  LyL
Syu = 0; SyL =
Sys =0;  Syp =

For double trailing arms, bump action does not alter the equivalent front-view arm angles, so

Oys = Oyso = Oyuo + Oyro
Oyp = 6ypo = 6yuo — OyLo

Table 12.8.3, previously presented for double transverse arms, is applicable for the lateral properties,
inserting the above length factors, giving the lateral bump scrub and bump camber expressions seen in
Table 12.18.1.

Because the arms are trailing (from the body) they lead from the wheel carrier, so in the terminology
used for general transverse arms the lengths would be negative. To avoid this confusion, the side-view arm
lengths are redefined as positive, as seen in Figure 12.18.2, which also shows positive arm angles, the arm
angle increasing in bump. The lower arm shown has a greater angle, so the pitch arm length is positive, and
the angle included at the pitch centre is positive, so being —0xpo. Because of the redefinition of the arm
lengths, Table 12.11.1 for transverse arms is not directly applicable.

The pitch arm radius is

H, —H,
Rp — BID_ _ BID

—Oxpo  Bxpo + Sxpzs
The pitch centre height is

Hp = Hgjym + 5 OxsRp
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Table 12.18.1 Double trailing arms, summary of equations

Lateral
Bsedo,y = 3 (fam Oypo— Oyso) (12.18.1)
&Bscdl,y = 0 (12.18.2)
1 Oypo
& =——=— (12.18.3)
Bel Rs Hgp
epc2 =0 (12.18.4)
Longitudinal
&Bscdo.x = 3 (—fsm Oxpo + Oxso) (12.18.5)
&Bsedl x = 3 (—fsmSxp + Sxs) (12.18.6)
1 Oxpo
casl — 55~ — — 12.18.7
EBeast Rp Hgp ( )
Sxp
cas2 — — 12.18.8
EBcas2 2Hem ( )

Figure 12.18.2 Modified double trailing arms, side view, arm lengths redefined as positive.

The local longitudinal bump scrub rate is

. __ Hp Hpm
BScdX = 5 = 5
cd, Rp Rp 2 Oxs

Hgym (6 S
_ Bam ( >I:l(30+ xnZs) +%(0xs0+SXSZS)
BID

Collecting terms then gives the longitudinal bump scrub coefficients shown in Table 12.18.1. The results
are similar to Table 12.11.1 but with various sign changes.

The bump caster coefficients are derived as previously, with the results as in the table.

By this means the double-trailing-arm suspension may be given most of the desirable coefficients, although it
continues to lack bump scrub variation (roll centre movement control) and quadratic bump camber.

12.19 Five-Link Suspension

A degenerate case of location by two arms (wishbones) and a steering rack occurs when each arm is
exploded into two separate links, making five separate links in all, as seen for example in Figure 1.10.9.
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This is claimed to offer greater design freedom to obtain some compliance properties, particularly for a
driven wheel. Geometrically, the present problem is to solve for the wheel carrier position as it moves in
bump. In general, analytic methods are not easily applied, because the equations are non-linear and
unwieldy, so an iterative numerical solution is used.

The complete wheel carrier position is specified by six coordinates, say (x, y, z), of a given point,
possibly the wheel centre, and angles (7, 8, 6) of camber, steer and pitch. From these, the position of each
of the six ball joints on the carrier can be calculated. The lengths of the spaces between these points and the
corresponding points on the body can also be calculated, and compared with the link lengths. The position
variables are then iteratively adjusted to reduce the link length discrepancies to nominally zero.

Normally the vertical position variable z would be specified, leaving five variables to determine. This
can be done cyclically, making a series of passes through the set of variables, each variable being improved
in turn. An increment of the variable is tested, to measure the change in each link space. These are the
influence coefficients for that variable. The variable can then be changed to minimise the total discrepancy.

Alternatively, all five variables can be adjusted simultaneously. The influence coefficients of all five
variables are determined together, which then gives five simultaneous equations for the new position
variables.

The values of the influence coefficients found vary somewhat with the carrier position, so there is a need
to re-evaluate them at each step. The second method above is slower per cycle, but becomes strongly
convergent when close to the solution.

The bump properties can be investigated in the usual way, by solving for the carrier position at a series of
suspension bumps and then curve fitting quadratic equations. The five-link suspension has all the design
variability of a double-transverse arm, and so can be given any geometric properties desired in practice.

The method of solution is similar to that for arigid axle, which is discussed in some detail in Chapter 13.

I
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Rigid Axles

13.1 Introduction

This chapter deals with rigid axles having rigid link location. A rigid axle is simply defined as one on which
the two wheels are physically connected without relative change of position other than a very small
amount of axle compliance. Trailing-twist axles are excluded. Chapter 1 gives diagrams of many
examples of rigid axles. Leaf-spring located axles are typically dealt with by considering an equivalent
link system.

Three basic forms of geometric analysis can be used on a rigid axle: pivot-point analysis; link analysis;
and computer numerical analysis. The purpose of such analysis is to reveal the suspension geometric
characteristics in a similar way to those of an independent suspension. However, the variables used are
different.

13.2 Example Configuration

Figure 13.2.1 shows a general four-link axle in simple line drawing form, similar to the real design shown
in Figure 1.7.3. Lateral location is achieved by the plan-view inclination of the links. In some cases the two
upper links meet at the axle, giving a single lateral location point there shared by the two links. More often,
and more practical in construction, the two links may be brought close together but still separate.

In many cases there is single longitudinal upper link, with lateral location provided by a specific-
purpose mechanism. Typically this is laid out horizontally just behind the axle, and is formed of either a
simple Panhard rod or a Watt’s linkage.

In Figure 13.2.1 it is apparent that the wide-spread lower links are likely to be a dominant factor in
controlling the important steer angle of the axle. However, this also depends on the spacing at the front of
the links.

13.3 Axle Variables

For an independent suspension, the fundamental independent variable is the individual suspension bump.
For arigid axle, there are two basic independent variables. These could be considered to be the suspension
bump values at each of the two wheels, zsg; and zgggr, but more often the complete axle variables are used,
namely the axle suspension heave z g and the axle suspension roll angle ¢g. The axle bump is measured at
the centre of the axle, so, for small angles, the axle suspension heave (symmetrical double bump) and the

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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(a) | (b)

Roll centre

Plan view Side view

Figure 13.2.1 A general four-link axle.

axle suspension roll are given by

ZASs = % (zsBL + ZsBR)

bs =g —Ps =

(13.3.1)

ZSBR — ZSBL
LAx

where L is the length of the axle between the wheel centres, ¢y is the body roll angle and ¢, is the axle
roll angle on the tyres. Correspondingly, the individual wheel suspension bumps left and right are

1
ZSBL = ZAS — 5 Laxds
) ] (13.3.2)
ZsBR = ZAs + ; Laxs

The geometric properties, such as the roll steer coefficients, of the axle are usually expressed in
terms of the suspension heave and roll, but could also be expressed in terms of the two single-wheel
bumps.

A rigid body in three dimensions has six degrees of freedom, these being three displacements and three
angles (expressed, for example, as the Euler angles). In the case of an axle these can be taken as the surge
(X), the sway (Y), the heave (Z), the roll angle (¢), the pitch/caster angle (0) and the steer/yaw/heading
angle (6). For an axle, the independent variables are the heave (Z position) and the roll angle, leaving four
variables to be determined, corresponding to the remaining four degrees of freedom and the four links
constraining the axle.

The displacements are straightforward, in the (X, Y, Z) directions, and performed first. The angles need
to be acted on in a specific order. In general vehicle engineering the Euler angles are normally used, which
are in the order heading angle, pitch angle and roll angle. In the case of an axle, the roll angle is an
independent variable, and best taken first, followed by the steer angle and then the pitch angle. Note that
the axle heave steer angle is not the same as arigid axle with steered wheels, which has independent wheel
steer rotation relative to the axle. The latter also involves the steering mechanism.

The roll angle, taken first, is about an axis parallel to the longitudinal reference X axis, through the axle
centre. The steer angle is then about the vertical Z axis. The pitch angle is last, performed most
conveniently about the axis line between the wheel centres.

Figure 13.3.1 shows the axle centreline AB (the line between the two wheel centres) with roll and steer
angles applied in that order. In the context of a computer analysis, the angles must be related to the
coordinates of the wheel centres A and B, with the angles taken in the correct order. The axle length
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Figure 13.3.1 Roll and steer angles of an axle defined, taken in that order, AB being the line between the wheel
centres, AD parallel to the Y axis, CD parallel to the X axis, BC parallel to the Z axis. Subsequent pitch is about the axle
centreline AB.

between centres is Lax = Lap. AD is parallel to the Y axis, CD is parallel to the X axis and BC is parallel to
the Z axis. Then

Lpc = Laxsing = zg — z¢
Lep = Laxcos ¢psind = —(xc — xp) = —(xp — xp)

LaAp = Lax €08 COS8 = yp — YA = YC — YA = YB — VA
For given wheel centre coordinates, the angles may be deduced from

ZB — ZC
LAx

sin¢ =

and, with the steer angle positive for right-hand rotation about the Z axis,

Xc — Xp XB — XA
tand = — = —
YD — YA VB — YA

The axle pitch angle does not arise directly in the above, being applied subsequently about the axle
centreline AB.

Table 13.3.1 summarises the geometric coefficients of an axle, expressed in terms of the suspension
heave and roll, as usual. The single-wheel bump coefficients are easily derived from these, if desired, by
considering a single-wheel bump as a combination of axle heave and roll (equations 13.3.2). This gives a
further set of coefficients for each side separately, possibly with non-symmetrical values because of design
features (e.g. a Panhard rod) or because of manufacturing tolerance asymmetry. The scrub values are only
really of physical importance at the wheels, but the axle can be considered to have mean effective
coefficients on its centreline.

In all cases there are, in principle, linear and quadratic coefficients (e.g. axle roll steer £arso and €ars1)
as for independent suspensions, although some of these may be rather small, particularly where the design
intent is true lateral symmetry, and often neglected. Example values are given later. Even more terms could
be considered, treating each coefficient as a polynomial.

Amongst the first six coefficients of Table 13.3.1, row 4 is of the greatest importance — heave steer and,
particularly, roll steer. The surge, sway and pitch are mainly of significance for their influence on the effect
found at the base of the wheels, reflected in the scrub coefficients. The longitudinal scrub can affect
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Table 13.3.1 The main geometric coefficients of a rigid axle

Zs heave ¢ roll
(1) X surge EAHX EARX
2 Y sway EAHY EARY
3) 0 pitch (caster) EAHP EARP
(4) ) steer (yaw) EAHS EARS
(3) X longitudinal scrub EAHSC.X EARSe,X
6) y lateral scrub EAHSC.Y EARSc,Y
Coefficient Description Base units Common units
D EAHX Axle heave surge m/m — (non-dim.)
2) EAHY Axle heave sway m/m — (non-dim.)
3) EAHP Axle heave pitch (caster) rad/m deg/dm
(@) EAHS Axle heave steer rad/m deg/dm
5) EAHSC.X Axle heave scrub longitudinal m/m — (non-dim.)
(6) EAHSC.Y Axle heave scrub lateral m/m — (non-dim.)
@) EARX Axle roll surge m/rad mm/deg
®) EARY Axle roll sway m/rad mm/deg
©) EARP Axle roll pitch (caster) rad/rad — (non-dim.)
(10) EARS Axle roll steer rad/rad — (non-dim.)
(11) EARSe.X Axle roll scrub longitudinal m/rad mm/deg
12) EARSC.Y Axle roll scrub lateral m/rad mm/deg

braking quality. The lateral roll scrub controls the roll centre height and its variation. For a small
suspension roll angle ¢g,

zspL = +3psT

zspr = —3 bsT

The lateral scrub values (the actual scrub, not scrub rate) are

yL = 8ARSC,YL¢S

R = EARSC‘YRd)S

where the roll scrub coefficient has units m/rad. The roll centre height H is given by

Heg =5 (yL +r)

SO

1
H = (eaRse,YR + EARSc,YL)

The same value of the roll scrub coefficient can be expected on the two wheels, or the mean value can be
taken, so

H = earsey

This can also be understood directly by imagining the axle to rotate about the roll centre, displacing the
bottom of the wheels to the side by He¢yg, for small angles.
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13.4 Pivot-Point Analysis

This method, previously described in Section 6.12, is described again here for convenient comparison with
other methods. It is based on studying the support links to find two points A and B where forces are
effectively exerted by the axle on the body, as in Figure 13.2.1. This assumes that the link lines do in fact
meet, which in reality is not quite the case because of manufacturing tolerances when in the static position.
Also, when the suspension is rolled, even in the ideal case the lines will no longer meet. The assumption of
the locating points A and B is therefore a useful fiction, an engineering approximation. Kinematically, the
line through points A and B forms a pivot axis for the axle relative to the body. Kinetically, the points A and
B are also points at which the lateral forces can be transmitted from the axle to the body, giving the usual
close relationship between the geometric, kinematic and kinetic properties. The line through AB
penetrates the transverse vertical plane of the axle at the geometric roll centre, which in simple analysis
is then also used as the force roll centre.

The axis AB also provides a way to investigate the roll steer characteristics of the axle. For certain
purposes, the vehicle is perceived to roll about the roll axis, joining the roll centres of the front and rear
suspensions. In the present context, however, a roll about such an axis consists of a roll about a horizontal
longitudinal axis and a yaw angular displacement. Now, evidently, the yaw angle of the whole vehicle does
not alter the suspension bump steer or roll steer angles. Therefore, to examine the roll steer, the body is
considered to roll about a horizontal longitudinal axis, with a suspension roll angle ¢g. Whatever the
height of this axis, the lateral displacement of the forward point A relative to the rear point B is

Yo = —¢s(za —z8)

This will create a steer angle of the axle, actually for a rear axle an understeer angle

5 _Yap ZA—ZB
Us =5 = —g ——
Xa/B XA — XB

The corresponding linear roll understeer coefficient of a rear axle is then

ZA —ZB
ErUI = A —xp Pa
where p is the inclination angle of the axle axis AB expressed in radians (not of the vehicle roll axis). The
effect will be an understeer one when a rear axle has an axis lower at the front point, as shown in the
diagram. For a front axle, understeer occurs for an axis pointing upwards at the front.

Suitable points A and B can be found for other axle link layouts. For example, if the lower links are
parallel then the point A is at infinity, so AB is parallel to the bottom links. If the bottom link pair is
replaced by a torque tube or similar system, then point A is the front ball joint. If transverse location is by a
Panhard rod, then point B is the point at which the rod intersects the vertical central plane. A Watt’s linkage
is usually installed with the centre point of the small vertical member attached to the axle, and the outer
ends of the links attached to the body (e.g. Figure 1.7.6).

A characteristic of the Panhard rod is that the roll centre rises for roll in one direction, and falls for the
other, because of vertical motion of the point of connection to the body. For other axle lateral location
systems it is similarly necessary to find the point where the line of action of the force intersects the central
vertical longitudinal plane.

The ‘pivot-point’ method of analysis also gives some insight into the effect of suspension bump
position on the suspension characteristics, and hence into the effect of additional vehicle load. By some
analysis of the suspension details, it is possible, and often easy, to see how the points A and B will move
vertically when the axle moves in heave (e.g. when the body lowers due to an extra load). In
Figure 13.2.1 it is apparent that as the body lowers, the front point A will lower, and the rear
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point Bwill rise, for this particular design. This arrangement will tend to keep the roll centre at a fairly
constant height. On the other hand, the inclination of the axis AB will increase with suspension bump
and with load. The result will be an increased linear understeer from the rear axle, and of the linear
understeer of the vehicle. This may be held to be an advantage of the system illustrated, in that a greater
load on the rear of the vehicle has a partially compensating increase of linear understeer. However, the
small vertical change of the roll centre height will not influence the increase of final oversteer due to the
extra load in conjunction with the tyre characteristics. Arguably, then, it may be better to use an
arrangement in which the roll centre is lowered as the load increases, giving preference to the more
critical limit-state handling.

13.5 Link Analysis

The axle characteristics can usefully be investigated by direct analysis of the links, particularly with some
simple configurations. Consider a rigid axle with a single-point upper lateral location and two lower
parallel longitudinal members, along the lines of Figure 1.7.4 or 1.9.1, such that the lower longitudinal
arms govern the steer angle of the axle, as illustrated here in Figure 13.5.1. The longitudinal links are
characterised by their length, static angle to the horizontal, and spacing.

Consider then a body roll giving a suspension roll angle ¢¢ on such a system. Relative to the axle, the
front of the left link will rise and the front of the right link will fall. In conjunction with the link static
inclination in side view, this will give a linear roll steer effect. Also, the non-infinite length of the links may
give a secondary steer effect.

The resulting understeer angle, dys, for a rear axle, will be given by

dXL* dXR

Ous = — B

where x is the forward movement of the axle point. For a small body roll angle, the left link front end rises,
pushing the axle back, so

de = — % B(bS GLO
dXR = +% B¢S 91{0
dus = 3¢s(Oro+ O10)

(a) (b)

T T LIS | Y

—— | —

L cosé,

Figure 13.5.1 Rigid axle with steer governed by two parallel longitudinal links (other links not shown).
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The consequent linear understeer coefficient is therefore
erut = 5 (Bro + OLo)

Considering now links of different lengths, (e.g. due to manufacturing tolerances),

1 (1Bpg\’
dXL :LL(l—COSGL)'N\‘LL(lgi) :LLE(Z d)s)
2 L

giving

Then, in terms of the link shortnesses S = 1/L,

8us = & B(Sr — SL)3
so the resulting quadratic understeer coefficient is

ERU2 = é B(Sg — S1)

Evidently, then, the first understeer coefficient arises from any difference in the static arm angles, as might
occur due to manufacturing tolerances or to asymmetrical loading. The second understeer coefficient
arises from differences of the arm lengths, which is just a matter of manufacturing tolerance, usually small.

Figure 13.5.2 shows a simple example axle in side view for two cases. The change of axle pitch angle
can be analysed in a very similar way to the analysis of camber angle on an independent suspension. In the
first case, for a bump dz the longitudinal displacement of the end of the link is

dx =dztan § =~ dz 6
Considering both links then, the change of pitch angle is

dxy —dxy dz
d@:*%— 9 —0
Ha HA( v 6L)

(a) (b)

Figure 13.5.2 Example axle side view: (a) surge and pitch location by inclined links; (b) location by links of different
length/shortnesses.
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The result is a linear axle heave pitch coefficient

0u — oL

EAHPI =
Ha

For links of different lengths, Ly and Ly, initially horizontal,

d dz?
dx:L(l—cos(ZZ)) zL% L—ZZ:%SdZ2

The pitch angle change is then

_Su-S

dz?
2H,

A6

with a consequent quadratic axle heave pitch coefficient

Sy—S.
2H,

EAHP2 =

Further analysis along these lines may be applied to obtain the longitudinal scrub of the bottom of the
wheel in bump, which is held to be significant in braking quality on rough roads, as any bump scrub at this
point is likely to cause deterioration of the braking quality.

13.6 Equivalent Links

A Watt’s linkage, designed correctly, produces an exactly straight line of its control point, over a well-
defined range of movement, until the centre link reaches alignment with one of the lateral links. There are
also other straight-line mechanisms that are sometimes used. Also, the Watt’s linkage may be deliberately
or accidentally imperfect, giving a very large radius of action. In a simple analytic or computer analysis, it
may be convenient to represent such a mechanism by a simple equivalent link. The question arises, then, as
to the accuracy of such an equivalent linkage. Such a situation typically arises where an axle has
longitudinal location at each side by a Watt’s linkage, but the only available software has conventional
links. A very long conventional link can be used, but an actual length must be chosen. Consider a radius
armrepresenting what is really a straight line. The equivalent link will be placed at the correct angle, so the
linear effect should agree exactly, but there will be an unreal second-order effect. This would be zero if the
link were infinitely long. The amount of second-order effect depends on the change of angle of the
equivalent link. Representing the angle of the link by an 8-byte real number, the angle is of order 1 radian,
so there will be no effect at all on the numerical solution if the angle change is less than about 10~ '3
radians. Considering a suspension displacement of 0.100 m, the actual length of the equivalent link needs
to be 10" m. In practice, it is easy to use a greater length, say 10?° m. With a real number range of 10°%,
this still allows accurate computation. The criterion applied here is of course a rather rigorous one, and
from the point of view of engineering accuracy, an equivalent link of say 1000 m would probably be
adequate.

13.7 Numerical Solution

Whatever the configuration, a numerical analysis by computer can obtain the various characteristics of the
axle, provide that suitable software is available, or written for the purpose, and small details, such as the
effect of manufacturing tolerances of mounting points, are also easily investigated.
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The basic rigid axle, as in Figure 13.5.1, is mounted on four links. This is the simplest form. Other more
complex types, such as a Watt’s linkage location, require a specialised program or the use of equivalent
links, as discussed earlier.

In principle, this could be solved by writing equations for the link spaces in terms of the axle position
variables, and setting these equal to the physical link lengths. In practice the equations would be unwieldy,
and non-linear, and iteration would be required for a practical solution. In practice, then, there is really no
way to avoid doing an iterative solution.

The basis of an iterative solution is that there is an existing position, somewhat in error, and a way to
improve that estimated position. Basically this requires the following:

(1) a suitable set of variables representing the axle position;

(2) a way to calculate from those the coordinates of the link connection points;
(3) a calculation of the link length errors;

(4) a way to use the errors to improve the position.

In practice it is convenient to use a ‘reference triangle’ method, to be described here. Using the
PointATinit and PointAT routines described in Chapter 15, a reference triangle can be defined, with all the
axle points being calculated from that. Consider, then, an axle with points defined as follows:

Py, ...Py link connection points on the body;

Ps, ..., Pg corresponding link points on the axle;

Py mid point of the axle (mean of Py and Pyy);
Pio centre of left wheel;

Py centre of right wheel;

P bottom point of the left wheel;

Pi3 bottom point of the right wheel.

The reference triangle is then, conceptually, rigidly attached to the axle. Various triangles may be used
successfully, but the choice here, for three points forming a right-angled triangle, is

Pr; coincident with Py, the axle centre point;

Pt  on the axle centreline (Pq to Py;), at a distance Ly from Py towards P

Pr;  approximately above Prj, distance Lt from Py and distance \/ 2Ly from Pr,, with x
coordinate initially at the same coordinate as Pr;.

A suitable length for Lt is on the same scale as the suspension itself. A value of 1 m allows it to be
omitted from some equations, for computational efficiency, but the equations are then no longer
dimensionally correct. A value of 0.5 m is good. Another possibility is to use half of the axle length,
bringing the second triangle point into coincidence with the left wheel centre.

The triangle is initially defined for the axle in its specified heaved and rolled position, the surge (X),
sway (Y), steer angle (6) and pitch angle () yet to be determined. The axle must subsequently be moved in
(X, Y, 6, 0) to satisfy the links without disturbing the heave and roll positions. This is facilitated by the
choice and use of the triangle. Simply displacing the entire triangle in X or Y is not problematic. By
choosing the first triangle point at the axle mid-point, the triangle can be rotated about Z in steer angle
change without interfering with the heave or roll. Finally, by pitching the axle about the axle line P;yPy;
there is again no unwanted disturbance.

At each cycle of the iteration, the position of the axle points with link connections, Ps, ..., Pg, are
calculated, using procedure PointAT, the link spaces are calculated, and hence the link length errors are
known.
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Four linear equations can be written for variation of the link space lengths with the axle position
variables (X, Y, 8, 0). Denoting change of these variables as a 4-vector X gives a matrix equation

AL =CX

where C is a sensitivity matrix, actually varying significantly with the axle position. In more detail, with X
as the variation of positions,

AL; = C11 X1 + Ci12Xo + C13X3 + CraXy
ALy = Co 1 X1+ CopXo + Co3X3 + CruXy
ALz = C31 X1 + C30Xo + C33X3 + C34X4

ALy = Cy1 X1 + CapXo + Ca3X3 + CyaX4

Now, ideally the known link space errors Ej, . . ., E4 will be eliminated, so the desired link space changes
are just the negatives of the errors, giving the matrix equation

CX=-E

Actually, this gives four simultaneous equations for X, . . ., X4, which when solved indicate the desired
adjustment to the axle position. In practice the result is imperfect because the local sensitivity matrix
varies with axle position, the problem not being truly linear. With revision of the sensitivity matrix at each
cycle, quadratic convergence can be achieved to high accuracy.

The axle movements are conveniently applied to the axle by moving only the reference triangle as
follows:

(1) Translate the complete triangle by the X and Y increments.
(2) Rotate the triangle by the steer angle correction (Z axis).
(3) Rotate the triangle in pitch about the axle wheel-to-wheel centreline.

Note that the axle iterative solution does not actually imply any particular sequence of angles defining
the axle position (e.g. roll before steer before pitch). The final result of this process is simply the axle point
position coordinates. The angle sequence arises subsequently when the coordinate position is interpreted
as a combination of angular displacements.

Rotation of the triangle in steer is easy, Figure 13.7.1, with the Z coordinate playing no part. Given the

initial (X], Y]),
R=\/X]+7Y?}
Y,
8 = atan(—l)
X1

where the initial angle evaluation must obtain the correct quadrant (e.g. in Fortran use atan2). Then

X =Rcos (6, + 6)
Y = Rsin (8; + 6)
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(X,Y) A X
(X,,Y) )
o,
Y

Figure 13.7.1 Steer rotation of a point.

Pitching of the axle is conveniently achieved by using X3 as the variable, that is, the X coordinate of the
upper point of the triangle, solving for a new triangle point having a known X coordinate (X3 + AXt3)and
known distance Lt from Pt and \/ 2Lt from Pr,. This requires a routine to solve for the intersection of two
spheres with a transverse vertical plane.

To calculate the pitch angle of the axle, calculate the pitch angle of the rigidly attached triangle. This is
conveniently done by considering the plan-view length from P, to Prs,

Lrispy = \/(XT3 — X)) + (Y3 — Y1)’
giving
p . (Lr13Pv>
= asin| ——
Lt

This is the whole angle. The angle change due to heave and roll requires subtraction of the static pitch
angle.

13.8 The Sensitivity Matrix

The key to successful iteration is the sensitivity matrix. For a given axle position, this is found analytically
or numerically according to the variable. In principle, a small disturbance is made to the triangle/axle
position and the changes of link space length are obtained. The sensitivity matrix is in fact

o) fon) (o) (e
(.4 oY 06 0X13
i) (o) (i) (o
oX oY 06 0Xt3
C =
o) (o) (o) (o
0X oY 06 0Xt3
o) fon) (o) (o
0X oY 5 0Xt3
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A small disturbance, AX say, therefore reveals the four sensitivities for the four link spaces to that
variable.

For the simple longitudinal axle displacement (surge) X, the sensitivities are easily obtained
analytically, according to the alignment of the particular link space. The change of link space is a
dot product:

AL = —-AX-u

where & is the unit vector along the link, actually from the vehicle body to the axle. Therefore the
sensitivity is simply

OLx /
ox -~ f
where I is the X-direction cosine of the link space (body to axle). Hence the first four sensitivities to X
are easily determined.

Similarly, for axle lateral (sway) displacement Y, the link sensitivities are

where m is the Y-direction cosine.

For the sensitivity to the steer angle, a numerical approach is convenient. A small temporary axle test
steer displacement &t is made to the triangle, the four link connection points are calculated, and the link
space length changes evaluated. Alternatively, the movement of each link point could be calculated as was
shown in Figure 13.7.1, but in terms of coordinate changes, the dot product of this taken with the link
direction.

For the pitch sensitivity, again a numerical solution is required, using a small test increment AXt3 on
triangle point 3, evaluating the link connection point positions and changes of space length.

In the case of the numerical evaluation of sensitivities, the question arises as to the size of increment to
use. This is not highly critical, but in practice a linear displacement in metres or angular displacement in
radians of 10™* to 10™"" works well, using 8-byte variables, with 10~ being near the centre of the range.
Outside that range, convergence is inferior. The similarity of values for displacement and angle relates to
the fact that a suspension has a scale of about 1 metre. Actual example values of sensitivity matrices are
given in subsequent sections.

13.9 Results: Axle 1

The first example axle is shown in Figure 13.9.1. It is a conventional four-link type similar to that in
Figure 13.2.1. Table 13.9.1 presents the numerical values for initialisation of the iteration process,
beginning with the actual unmoved position coordinates. Also given are the values of the sensitivity matrix
in the static position, where, for example, the first column is the response to X displacement of the axle, that
is, the X direction cosines. Then the interpolation values f> and f; follow with the normal displacements of
points relative to the reference triangle, as specified earlier.

Table 13.9.2 presents the successive iteration loop errors, where the quadratic convergence can be
observed. Finally, the actual results for surge, sway, pitch angle and steer angle are given. The convergence
error is sometimes exactly zero, but, for interest, 10~'> m is in any case only the diameter of the nucleus of
an atom.
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Table 13.9.1 Numerical solution, Axle 1: initialisation

Axle type: Standard 4-1link

Initial position coordinates:

K X vy z

1 0.600000 0.300000 0.250000
2 0.300000 0.200000 0.400000
3 0.300000 -0.200000 0.400000
4 0.600000 -0.300000 0.250000
5 0.100000 0.500000 0.200000
6 0.050000 0.070000 0.400000
7 0.050000 -0.070000 0.400000
8 0.100000 -0.500000 0.200000
9 0.000000 0.000000 0.300000

10 .000000 .680000 0.300000
11 0.000000 -0.680000 0.300000

o
o

Link lengths (m) = 0.540833 0.281780 0.281780 0.540833

Static position sensitivities:

CS1(1,:)= -0.924500 0.369800 0.184900 0.462250
CS1(2,:)= -0.887217 -0.461353 0.073960 -0.025886
CS1(3,:)= -0.887217 0.461353 0.018490 0.006472
CS1(4,:)= -0.924500 -0.369800 -0.092450 0.231125
K £2 £3 dsp
5 1.000000 -0.200000 0.100000
6 0.140000 0.200000 0.050000
7 -0.140000 0.200000 0.050000
8 -1.000000 -0.200000 0.100000
9 0.000000 0.000000 0.000000
10 1.360000 0.000000 0.000000
11 -1.360000 0.000000 0.000000

Initially rolled and heaved axle:

Axle heave = 0.050000 m
Axle roll angle = 6.000000 deg

13.10 Results: Axle 2

The second example axle has a Panhard rod for lateral location, with a single top longitudinal link, as
shown in Figure 13.10.1. Table 13.10.1 shows the static point coordinates, the interpolation factors and the
final results. Table 13.10.2 shows the sensitivity matrix values for three positions — static, initially
displaced and final — where significant differences may be seen. Also the distinctive values for the Panhard
rod link are evident.
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(a) (by —— S

(d) (c)

Figure 13.9.1 Example Axle 1, with convergent link location: (a) side view; (b) front view; (c) plan view; (d) axometric

three-quarter view.

Table 13.9.2 Axle 1: iteration results

Iteration loop errors:

Loop Linkl Link2 Link3 Link4 Total abs

0 0.317E-02 0.107E-01 -0.132E-02 -0.458E-02 0.198E-01
1 0.167E-03 0.395E-03 0.250E-03 0.106E-03 0.917E-03
2 0.162E-06 0.429E-06 0.299E-06 0.117E-06 0.101E-05
3 0.172E-12 0.496E-12 0.372E-12 0.134E-12 0.117E-11
4 -0.111E-15 -0.555E-16 0.555E-16 0.000E+00 0.222E-15

Values obtained:

Axle heave 0.050000 m
Axle roll angle = 6.000000 deg
Axle surge = 0.002335m
Axle sway = 0.011737m
Axle pitch/caster = 0.185575 deg
Axle steer = -0.922967 deg

13.11 Coefficients

By solving for a range of points through the suspension range and fitting a quadratic curve, the basic
coefficients may be obtained. This has been done here with 11 points for heave through a range —0.100 m
to 4+ 0.100 m and for roll from —0.100rad to + 0.100 rad. The results are given in Table 13.11.1 for Axle 1
and Table 13.11.2. for Axle 2. As may be seen in both tables, for the pitch angle the quadratic fit is poor, and
a much higher order of polynomial is required for a really good fit, but the pitch angle is relatively small.
The quadratic fit for the important steer angle is good. Axle 1 is symmetrical, so heave has exactly zero
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Table 13.10.1 Numerical solution, Axle 2: initialisation and iteration

Axle type: One top link, Panhard rod

Initial position coordinates:

K X N 4

1 0.600000 0.500000 0.250000
2 0.300000 0.000000 0.500000
3 -0.100000 -0.400000 0.350000
4 0.600000 -0.500000 0.250000
5 0.100000 0.350000 0.200000
6 0.050000 0.000000 0.500000
7 -0.100000 0.400000 0.320000
8 0.100000 -0.350000 0.200000
9 0.000000 0.000000 0.300000
10 0.000000 0.680000 0.300000
11 0.000000 -0.680000 0.300000

Link lengths (m) = 0.524404 0.250000 0.800562 0.524404

K £2 £3 dsp

5 0.700000 -0.200000 0.100000
6 0.000000 0.400000 0.050000
7 0.800000 0.040000 -0.100000
8 -0.700000 -0.200000 0.100000
9 0.000000 0.000000 0.000000
10 1.360000 0.000000 0.000000
11 -1.360000 0.000000 0.000000

Initially rolled and heaved axle:

Axle heave = 0.050000m
Axle roll angle = 6.000000 deg

Iteration loop errors:

Loop Linkl Link2 Link3 Link4 Total abs
0 -0.345E-02 0.559E-02 -0.246E-02 0.253E-02 0.140E-01
1 0.726E-04 0.811E-04 -0.122E-04 0.732E-04 0.239E-03
2 0.111E-07 0.259E-07 0.339E-08 0.115E-07 0.519E-07
3 -0.111E-15 0.167E-14 0.111E-15 0.000E+00 0.189E-14
4 -0.111E-15 0.000E+00 0.000E+00 0.000E+00 0.111E-15

Values obtained:

Axle heave = 0.050000m
Axle roll angle = 6.000000 deg
Axle surge = 0.001558m
Axle sway = 0.003950m
Axle pitch/caster = 0.088394 deg
Axle steer = 0.811626 deg
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Figure 13.10.1 Example Axle 2, with Panhard rod lateral location: (a) side view; (b) front view; (c) plan view;
(d) axometric three-quarter view.

steer and sway effects, but some heave—steer and heave—sway effects may be seen on Axle 2 because of the
Panhard rod lateral location.

Table 13.11.3 presents the quadratic scrub coefficients found for the two axles. Axle 1 is exactly
symmetrical, so heave causes zero lateral scrub. There is significant longitudinal scrub which could be
designed out by adjusting the lateral view link angles. Roll causes 0.0356 m/rad linear longitudinal scrub,

Table 13.10.2 Axle 2 sensitivity matrices

Static position sensitivity matrix:

CS1(1,:)= -0.953463 -0.286039 0.190693 0.333712
CS1(2,:)= -1.000000 0.000000 -0.114416 0.000000
CS1(3,:)= 0.000000 0.999298 0.003814 -0.038139
CS1(4,:)= -0.953463 0.286039 -0.066742 0.116799
Starting sensitivitymatrix:

CS(l:) = -0.953463 -0.269762 0.172102 0.316961
CS(2:) = -1.000000 -0.083623 -0.411128 -0.024538
CS(3:) = 0.000000 0.993949 -0.005466 -0.099701
CS(4:) = -0.953463 0.309628 0.209821 -0.289556
Final sensitivitymatrix:

CS(l:) = -0.963421 -0.259312 0.178379 0.322722
CS(2:) = -0.979243 -0.064430 -0.411390 -0.023097
CS(3:) = -0.004605 0.996852 -0.004667 -0.103098
CS(4:) -0.944616 0.320211 0.212084 -0.284411
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Table 13.11.1 Basic heave and roll coefficients for Axle 1

Quadratic fit coefficients:

co Cl c2 Q fit

Heave:

Surge -0.000065 -0.054334 1.497510 0.968790
Sway 0.000000 0.000000 0.000000  -=-----
Pitch 0.008868 0.496882 1.345168 0.765415
Steer 0.000000 0.000000 0.000000  -=-=----
Roll:

Surge 0.000000 0.000000 0.101814 0.999431
Sway 0.000000 0.095631 0.000000 0.999765
Pitch -0.000020 0.000000 0.025374 0.840332
Steer 0.000000 -0.052557 0.000000 0.997766

closely associated with the roll steer which without any pitch effect would give 0.05256 x 1.36/2 =
0.0357 m/rad, in good agreement. The linear lateral scrub coefficient in roll is 0.395 m/rad, giving the roll
centre height.

For Axle 2, with the Panhard rod, the longitudinal heave scrub happens to be similar to Axle 1, but the
quadratic coefficients are much greater, and there is considerable asymmetry. There is some lateral heave
effect. Roll causes an approximately antisymmetrical linear longitudinal scrub. The linear lateral scrub
with roll averages 0.361 m/rad, giving the roll centre height.

Table 13.11.2 Basic heave and roll coefficients for Axle 2

Quadratic fit coefficient matrix:

(o10] C1l c2 Qfit

Heave:

Surge -0.000060 -0.070559 1.354386 0.973089
Sway 0.000028 0.041053 -0.751124 0.986469
Pitch 0.005208 0.403181 0.373187 0.784783
Steer 0.000043 0.040367 -0.728536 0.989236
Roll:

Surge -0.000001 0.000120 0.152865 0.993947
Sway 0.000000 0.060982 0.113727 0.999640
Pitch -0.000010 0.000138 0.013249 0.815758
Steer -0.000002 0.260935 0.108252 0.999043
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Table 13.11.3 Scrub coefficients for Axles 1 and 2

Axle 1 Scrub coefficients:

Heave (unitsm/m=---):

Left X = 0.000015 -0.196137 0.022234
Right X = 0.000015 -0.196137 0.022234
Left Y = 0.000000 0.000000 0.000000
Right Y 0.000000 0.000000 0.000000
Roll (units m/rad):

Left X = 0.000000 0.035612 0.322117
Right X = 0.000000 -0.035612 0.322117
Left Y = 0.000000 0.395191 -0.340655
Right Y = 0.000000 0.395191 0.340655
Axle 2 Scrub coefficients:

Heave (unitsm/m=---):

Left X = -0.000018 -0.194421 0.832917
Right X = 0.000040 -0.139523 -0.157875
Left Y = 0.000021 0.041400 -0.749998
Right Y = 0.000017 0.041117 -0.745286
Roll (unitsm/rad) :

Left X = 0.000000 -0.175865 0.257751
Right X = -0.000001 0.177716 0.404189
Left Y = -0.000001 0.360889 -0.248543
Right Y = 0.000000 0.361160 0.477119

1
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Installation Ratios

14.1 Introduction

The dynamic behaviour of a vehicle depends on the on the effect of the spring as seen at the wheel,
commonly called the ‘wheel rate’ or ‘effective spring stiffness’, and on the damping coefficient effective at
the wheel. However, the spring and damper are not installed at this point, but elsewhere on the suspension.
The effective spring and damper characteristic at the wheel must therefore be related to the characteristics
of the actual spring and damper. On a double-wishbone suspension they often operate about half-way out
on the bottom suspension arm. On a racing car, often they operate through a linkage, including various
forms of intermediate rocker. Basically the effect of the spring and damper depends on the ratio of
velocities spring-to-wheel and damper-to-wheel when the wheel is displaced in its bump action. In general
this velocity ratio, also known as the ‘motion ratio’ or ‘installation ratio’, is not a constant, but varies with
the wheel bump position. Analysis of the effect of installation of the spring and damper therefore involves:

(1) evaluation of the relative motion of the spring, damper and wheel,
(2) consideration of the implications of this ratio.

Evaluation of the motion ratio is not too critical, especially in the early stages of design, so approximate
methods, within 1 or 2 per cent, are of some value, and algebraic methods have the benefit of giving
more insight into a design than do numerical methods. Hence the following sections describe algebraic or
drawing methods for common suspensions. These methods may also be used as the basis of computer
programs, as an alternative to the common finite increment of displacement method, or to the numerical
velocity-diagram method.

The main principle involved is the geometry of the lever, or rocker. Rigid-arm suspensions, such as
trailing arms or swing axles, follow on the same principle. Double wishbones require a different kind of
analysis, to relate the wheel motion to the motion of the end ball joint of the relevant arm, usually the lower
one, which is carrying the spring or damper, giving the first factor of the total motion ratio. Once this is
known, normal rocker analysis will give the other factor. For struts, a slightly different analysis is required.

14.2 Motion Ratio

The main notation required here is as in Table 14.2.1. Note that the subscript K is used for the spring
because the subscript S has already been allocated to ‘suspension’.

At a given suspension bump position zg from static ride height, the spring compression is xi relative to
static. A small further suspension bump motion dzg results in a corresponding further spring compression

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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Table 14.2.1 Main nomenclature for motion ratios

Lp m damper length

Ly m spring length

Rp — damper motion ratio

Rk — spring motion ratio

Vb m/s damper compression velocity
Vk m/s spring compression velocity

Vp m/s velocity of intermediate pushrod
Vs m/s suspension bump velocity (wheel)
Xp m damper compression from static
XK m spring compression from static
Zs m suspension bump

dxk, Figure 14.2.1. The ratio of these is the displacement motion ratio for the spring at the suspension
bump position zg. This is denoted Rk/s (spring relative to suspension bump), generally abbreviated to Ry:

6XK
Rgs = —
K/S 525

Note that this is the spring compression increment divided by the suspension bump increment, not vice
versa. It is the suspension bump movement that is considered to be the reference movement. This value of
Ry will be independent of zg and 6zg only if the system is linear, that is, if the motion ratio Ry is constant,
which is generally not true. Therefore, in general the above expression is usable only for small 6zs. With a
suitable computer program to analyse the suspension geometry, the motion ratio may be evaluated in the
above way, with 6zg being given a suitable small value (e.g. 0.1 mm), depending on the precision with
which the suspension position can be calculated. It is the actual suspension position that is solved for each
of the adjacent conditions.

Mathematically, the motion ratio value is really the above ratio as 6zg tends to zero. The result, in the
limit, is the derivative

d
Rg = —K
dZs

This provides a possible means of evaluation if an explicit algebraic expression is available for spring
compression xk as a function of suspension bump displacement zg. For example, if it is known that, over

ks

; 8x,
&l

z,

r

Figure 14.2.1 Spring compression displacement v. suspension bump displacement.
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the range of interest, the spring compression, perhaps by an empirical curve fit, is
XK =Aizs + AzZé
then

dx;
Ry = —~

=A 2A
i 1+ 245zs

Zs
The derivative definition of Rx may be extended by inserting a time element:

. dxg df
dr dzg

K

The terms on the right-hand side are a velocity and a reciprocal velocity, so Rx may be written as a ratio of
velocities:

R = Ve

Vs
The spring motion ratio is therefore identically equal to the quotient of spring compression velocity over
suspension compression (bump) velocity. Because the numerator and denominator are both velocities, the
quotient is dimensionless, and correctly called a ratio.

The velocity ratio definition provides a practical means of evaluating R if the velocity diagram can be
drawn. Frequently this is feasible, even easy, for a two-dimensional set-up, and may also be practical for a
three-dimensional suspension layout if the parts can be treated sequentially as two-dimensional parts (e.g.
aracing suspension with pushrod and rocker, in many cases). Even a three-dimensional velocity diagram
can be ‘drawn’ by computer. In a direct velocity-diagram solution of the suspension, the single actual
suspension position is used, and the velocities are obtained directly at the actual suspension position; there
is no question of an increment of position. In a manual solution, the velocity diagram may indeed be solved
by accurate drawing, but equally if not better by sketching and algebraic solution.

Considering the displacement xp of an intermediate pushrod, the overall spring motion ratio Rx may be
expressed as

(SXK (SXK S)CP
Ry = = :
623 S)Cp SZS

or, in the limit, it is the derivative product

d)CK pr
=— - —=RgpR
K= dxp  dzg K/P " Ip/s
so the overall motion ratio is the product of the sequential ratios. By induction, this obviously extends to
any number of sequential ratios. In terms of the velocities Vi, Vp and Vs,
W Wk W

Re = 2 K
A A TA

or, more generally, for multiple ratios in sequence
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Hence a suspension mechanism can be solved by separate analysis of the sequential parts. This may be
especially valuable where a complex suspension can be treated as separate sub-mechanisms, each analysable
in two-dimensional motion, and each analysed in the most convenient way for that particular part.

In general the spring or damper motion ratio is not uniform through the bump motion, it is a function of
zg, the bump position of the suspension:

RK = RK(Zs)

For passenger cars the value may be approximately constant or may increase slightly with bump, in
the latter case usually also reducing with droop. For racing cars a rather rapidly increasing velocity ratio
may be used. Where applied to a spring, this gives a rising stiffness with bump, and is called a ‘rising-rate’
suspension. Applied to a damper, it is rising-rate damping. Obtaining rising rate by mechanism design
is generally much easier and more controllable than doing so by manufacturing rising rate springs or
position-dependent dampers. Often the spring and damper are fitted co-axially and have the same motion
ratio. For rising rate, this conveniently gives the desirable increase of wheel damping coefficient with
increasing wheel rate. However, a rising rate motion ratio has a different effect on springs from that on
dampers, as discussed in Sections 14.14 and 14.15.

14.3 Displacement Method

One of the ways to obtain the motion ratio value for a given nominal suspension bump position is by
analysis of a pair of slightly different suspension positions. If the position analysis is undertaken by a
drawing method it is prone to inaccuracy because of the relatively small difference of positions. Hence,
the drawing must be undertaken by an experienced draughtsman at a large scale. With less emphasis on
accuracy, a wide spread of the two positions will give an average ratio over the movement which may be
useful in some cases. Also a sequence of, say, eight to ten positions may be drawn throughout the bump
motion, and the damper compression plotted as a graph against suspension position, with the curve
smoothed through the points. This helps to reveal any errors. The spring motion ratio for any particular
position is then the gradient dxk /dzs of the curve at the particular suspension bump position.

Drawing methods were the traditional technique in bygone days, but are regarded as somewhat archaic
nowadays because of the availability of computers. However, drawing methods may still be of some value,
for example if the particular configuration cannot be handled by existing software. In that case, careful
drawing or velocity diagram analysis may be more expedient than writing new software, unless the
configuration is known to be one of lasting interest. Computer-aided drawing packages offer potentially
enhanced accuracy, of course, and can even be used to solve simple installation ratio problems.

In some cases the position relationships may be found algebraically. In three dimensions the solutions
are too unwieldy for hand solution in other than isolated cases, for example to check early results of a
computer analysis. However, if the system can be treated in a two-dimensional sequence then an analytical
expression for positions may be possible, with differentiation giving the velocity ratio.

On one occasion the author was asked to adjudicate between two commercial computer programs
which gave substantially different results. A careful drawing solution clearly sided with one of the two
programs, and also suggested the reason for the fault in the other program. Drawing methods may
therefore still be of value, even in this computerised day and age.

The actual solution of a given suspension position for a given body position (heave, roll and pitch) and
suspension bump due to road displacement and tyre compression requires two- and three-dimensional
coordinate geometry (analytical geometry), discussed in later chapters.

14.4 Velocity Diagrams

Avelocity diagram is a coordinate diagram on which any point corresponds to a given velocity, drawn to a
particular velocity scale (e.g. 10 mm/s : 1 mm). Hence, any point (X, Y) on any component has a velocity
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(Vx, Vy) which can be plotted on the diagram at a point (Vx, Vy) using a suitable scale; in practice this is
done for a few special points, essentially those at the joints between components, that is, at the pivot points
and at sliders, at the ball joints in a suspension. The distances between points in the velocity diagram
represent velocity magnitudes. The position of one point relative to another represents the relative velocity.
The velocity diagram can be said to be drawn in ‘velocity space’. The velocity diagram is constructed
sequentially, point by point, according to the particular mechanism. It may drawn accurately to a given
scale, or, often more conveniently and more accurately, simply sketched and solved algebraically. Accurate
drawing requires some numerical calculation anyway. A full description of the principles of velocity
diagram construction appears in standard texts (see the references at the end of this chapter).

Velocity diagrams are usually two-dimensional (Vx, Vy), corresponding to common two-dimensional
mechanisms, which have point positions (X, Y). Hence, they can be drawn on a two-dimensional surface,
such as a piece of paper. Solution may be by geometrical drawing constructions, or by sketching and
algebra with coordinate geometry.

However, three-dimensional velocity diagrams are also possible conceptually, although difficult to
draw by hand, but can be represented in a computer by three-dimensional velocity vectors (Vx, Vy, Vz)
obtained algebraically. This can even be extended to three-dimensional acceleration diagrams.

Velocity diagrams and displacement methods for obtaining spring and damper motion ratios are
independent methods, and may be used to provide a check on each other.

14.5 Computer Evaluation

Commercial and proprietary packages are available for analysing suspension geometry on computers. At
least one program, by the author, includes design facilities to specity, for example, a given bump steer for
which the computer will choose suitable link dimensions.

When such numerical analysis packages work, they generally work well and accurately. However, not
all packages can handle all possible configurations, especially for the more esoteric types used in racing.
Also the ‘assembly logic’ of some packages is not always reliable, so that in some configurations there is
a sudden total failure, usually manifested by a ‘square root of negative number’ error (see Chapter 16).

A full three-dimensional analysis program to obtain the motion ratios is a considerable job to write well.
Such a program is certainly very useful, but provides specific numbers rather than design insight, and is
best considered as an adjunct to qualitative understanding and simple algebraic models rather than
completely replacing them.

14.6 Mechanical Displacement

If the suspension to be analysed already exists, or it is viable to construct one, perhaps adapting some other
design, then it may be useful to actually measure the displacement graph of spring position and damper
position against bump position, using dial gauges. This graph may be compared with solutions achieved by
drawing, analytical methods or computers. The results are likely to be disappointing in some cases. Fair
agreement is usually obtained for passenger cars, but in the case of racing cars, with long links and stiff
springs, the elasticity of suspension members and even of the chassis at the mounting points may give rise
to substantial discrepancies. In that case, if it is accepted that the discrepancy is indeed due to compliance
in the suspension, then a more elaborate suspension model may be required. Figure 14.6.1 shows such a
model, in which the suspension linkage compliance K is included. Under dynamic conditions, the
suspension bump deflection

Z§ = Zw —ZB

is no longer related directly to the spring deflection by a simple geometric motion ratio. However, for a
given static position there are particular loads and deflections, so there is still a definite relationship xg(zs).



276 Suspension Geometry and Computation

Body my
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Figure 14.6.1 Heave-only suspension model including link compliance K, which could alternatively be placed
above the Kw/Cy components.

Figure 14.6.1 assumes that the suspension spring and damper operate at the same point, as indeed is
applicable for most racing cars, or else more than one suspension compliance must be included. In a static
position, the damping forces are zero, and the link and suspension spring stiffnesses act in series.

The results of a motion ratio analysis must therefore be applied with some caution for more compliant
suspensions. Even then, however, the motion ratio provides basic insight into the springs and dampers
required, and into the design of a mechanism for rising rate.

14.7 The Rocker

The basic component in motion ratio evaluation is the rocker, or lever, which arises in principle, even if not
explicitly as arocker, in virtually all suspensions. In some cases, especially modern racing cars, arocker is
included as such to link the basic suspension to the spring and damper. By virtue of including a pushrod, or
pullrod, and rocker, the spring and damper can be better positioned, vertically inside the body, or, as is
common nowadays, laid down horizontally on top of the body or along the upper sides of the gearbox. This
improves the aerodynamics by removing the spring—damper unit from the high-speed airflow, and the
inclusion of a rocker in the system makes it very easy to change the motion ratio and rising rate simply by
changing the rocker.
The function of a rocker, illustrated in Figure 14.7.1, can be specified by three aspects:

(1) the total rocker angular deviation between pushrods, 6rp;
(2) the rocker motion ratio, Rg;
(3) the rocker rising rate factor, fi.

The rocker shown in Figure 14.7.1 is a completely general one. There are numerous simpler special
cases. The angle Ogp is the rocker deflection angle, the total angular difference between input and output,
which will actually vary a little over the range of motion, and is specified at the normal ride height.
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Figure 14.7.1 General rocker configuration: (a) geometry; (b) velocity diagram.

Figure 14.7.2 shows three examples of deflection angle 6gp (0°, 90°, 180°). Intermediate deflection angles
are equally possible.

The rocker motion ratio Rg, specified at the normal ride height, depends most obviously upon the arm
lengths from the pivot axes to the input and output points, but also depends on the angular position of the
input and output rods. Figures 14.7.3 and 14.7.4 illustrate some possible ways of achieving motion
ratios V,/V;.
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(a) (b) (c)

Figure 14.7.2 Simple rockers with various deflection angles.

V2

Figure 14.7.3 Simple rockers with various motion ratios.

The rising rate of a rocker is the proportional increase of motion ratio per unit of rocker rotation:

1 dRr

= ke de

To express this in terms of suspension motion at the wheel (i.e. as wheel rising rate), the geometry of the
rest of the suspension must be known, so wheel rising rate is not necessarily a property of the rocker alone,

v,

Vi

Figure 14.7.4 Simple rockers with various rising rates (zero in the first case).
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but becomes so if the rest of the system is essentially linear. When a rising rate is desired, the design
method commonly applied in practice is to guess at some dimensions and then to play with them on the
computer. What is needed is a systematic design procedure.

The properties of the rocker may be deduced for special cases, as required, but in fact can be derived for
the general rocker of Figure 14.7.1 quite easily, by virtue of an informed choice of representational
parameters, arrived at by experience. It is assumed in the following analysis that the motion is planar. If the
input or output rods are not parallel to the rocker plane, defined as a plane perpendicular to the axis of
rotation of the rocker on the body, then the velocities in Figure 14.7.1 are the rocker plane velocities,
related to the actual rod velocities by the cosine of the out-of-plane angle.

The parameters in Figure 14.7.1 are:

(1) the rocker included angle ¢r, positive when the output leads the input as shown;

(2) the input and output rocker arm lengths /; and /;

(3) theinputand outputrod offset angles s, and r,, between the rod and the tangent perpendicular
to the corresponding arm radius;

(4) the rocker position fg, from some appropriate datum, usually the normal ride position;

(5) the input and output rod velocities, in the rod directions, V; in and V, out;

(6) the rocker angular velocity wg.

Of the above, lengths /; and /, are constant, as is ¢y, these three parameters being the essence of the rocker
geometry. Other parameters will vary, although wg is normally deemed to be some constant value for the
purpose of analysis.

The performance parameters of the rocker, Orp, R and fg, are derived as follows. The rocker deviation
angle is

Orp = ) +dr + 1,

In practice, for design purposes, this is required in the form

¢r = Orp — Y1 — ¥,

Figure 14.7.1(b) is the velocity diagram for the rocker. At rocker angular speed wg, assumed for analysis,
the tangential speed of point A is wg/;, perpendicular to line AC, so at angle 6y from the vertical, giving
point a representing V. Similarly, point b, representing Vg, is established at 6 + ¢p.

The velocity of A can be resolved into components parallel and perpendicular to the inputrod atangle 6, to
the vertical. To do this, construct in the velocity diagram the line at 6, from the vertical, parallel to the input
rod, and drop the perpendicular from a, giving point p. The length cp represents the velocity along the rod,
whilst pa represents the tangential velocity of one end relative to the other. Similarly for the output, so the
actual damper compression speed on the output is represented by cq. The rocker motion ratio Ry is given by

Vo _cq

Rp = —2 =
R Vb cp

Hence the velocity ratio of the rocker, defined by

Re = —=
R Vi

is given by

_ wrh (O +pr—02)
lelcos( GR + 01)
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This may be expressed more concisely as

__hcosi,
R 1 cos A

This result may be summarised very simply by a physical interpretation. The denominator is the
perpendicular distance from the axis to the line of action of the input link, Figure 14.7.1. The numerator
is the perpendicular distance from the axis to the line of action of the output link.

As an alternative interpretation, using the rocker arm length motion ratio

RrL = 5—?
and the rod angle motion ratio
cos P,
R Cos i,
the rocker motion ratio Rg may be expressed as
Rr = RrLRRry

The first of these new parameters, Rgy, is constant. The second, Ry, varies as the rocker moves, and
provides the basis of design for rising rate.
The input and output have tangential velocities, Vi, in and Vi, our, One end relative to the other, of

Vtanjn - lel sin lnljl
Vlan,out - wRIZSin 'JIZ

These rotate the rods, thereby also altering the ¢ angles, in a way which depends on the length of the input
and output rods. This can be dealt with separately, and is, in any case, generally a much smaller effect than
the basic rocker rising rate effect. Considering the input and output rods to remain parallel to their starting
angle, and considering ¢ to be positive as shown in Figure 14.7.1, at rocker angle position 6 clockwise
from normal ride height,

Yr=yz7+0
Y=z, 0

where i, and i, are the values of ¢ at normal static ride height (zero deflection).
The rocker angle motion ratio factor is then

_ cos(tfz, — 6)
B cos (g, + 0)

Depending on the application, it may be convenient simply to think in terms of the motion ratios at two
positions, say zero bump and some expected bump position. However, the mathematical rising rate factor,
at zero bump defined earlier, was

1 dRg

fR:R—RE
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with
Rry = Rryo(1 + fr )
The rocker angle motion ratio at 6 is

_cos(ifrz—6)
o cos(ifz;— 0)

1 [ Rry
=— —1
R 0 <RRW,0 )

which, by considering infinitesimal 6, with substitution and condensation, becomes

The rising rate factor f; is given by

fr = tan i, + tan g,

Hence, the rising rate is governed by the angles ¢; and ¢s,. Note that these are positive as defined in
Figure 14.7.1 and the signs must be respected; also they may well change sign within the range of motion
of the rocker. Physically, the reason for the rising rate is simply that the input moment arm is increasing,
and the output one is decreasing.

At rocker deflection 0 the motion ratio Ry is therefore estimated to be

Rr = RrLRry(1+ fr 0)

This method of rising rate analysis is useful for a preliminary appraisal, giving a first estimate of the
required values for ¢, and ¢, in combination, which then, in conjunction with the required rocker angular
deflection 6gp, gives the rocker included angle

¢r = Orp— Y1 —

Practically, because of the packaging problems of large rockers, fairly large rocker angular movements are
used in practice, so once a first estimate has been made it is more practical to work with two or more actual
rocker positions, for example normal ride height and a bump position, and to obtain two corresponding
values of motion ratio.

The usual situation is that a given increase of ratio is required for a given rocker angular displacement,
estimated from a given wheel bump motion, intermediate ratio and rocker input arm length. The required
increase of rate may be shared between input and output. The required increase of rate on the input, say, is
then known. Let the ratio be r = R,/R;. From the angle motion ratio

_ cos(ifz, — 0)
e cos(iz; + 0)

may be obtained

Cos iz
="
cos(ifz; + 0)

1 1
t = 0——
an 7, pe (cos r)

This may be solved for ¢z as
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giving the correct initial angular position for the arm. In practice it may be difficult to obtain a low enough
ratio with a practical rocker size, and {z; may be negative. This gives a rate which will fall slightly before
then rising to the required value.

For design purposes, rocker design is a matter of juggling the lengths and angles according to the given
input pushrod motion and the required rising rate. Two points to bear in mind are that basically it is the
square of the motion ratio that controls the effect seen at the wheel, and that a motion ratio rising from
normal ride height will also generally fall when below the normal ride height. Hence, large motion ratio
changes must be designed with caution. Rising rate also causes an important additional stiffness term even
with a linear spring (see Section 14.14).

14.8 The Rigid Arm

Rigid-arm suspensions, such as a trailing arm, have a single arm from a pivot axis, the wheel camber angle

being rigidly fixed relative to the arm. It is possible, but unusual, to have steering with such a system. Rigid

arms may be classified in various ways. From the geometric point of view, the important distinction is the

angle, ¥4, between the arm pivot and the vehicle centreline in plan view, Figure 14.8.1(a). Sometimes

there is a non-zero angle of the arm pivot, ¢, in rear view, Figure 14.8.1(b), as discussed in Chapter 11.
The basic classifications by ¥, are:

(1) trailing arm (90°);
(2) semi-trailing arm (e.g. 70°);
(3) leading arm (90°);

(b

)
QUL

Y/

(c) (d)

[ iwP

Figure 14.8.1 Rigid-arm suspensions: (a) plan view of semi-trailing arm; (b) rear view of semi-trailing arm; (c) side
view of trailing arm; (d) rear view of swing axle.
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(4) swing axle (0°);
(5) transverse arm (0°);
(6) semi-trailing swing axle (e.g. 45°).

The spring and damper usually act directly on the arm. In any case, it is necessary to obtain the
relationship between the suspension bump velocity, that is, of the vertical wheel velocity at the contact
patch, relative to the body, and the angular velocity of the arm. The radius of action of the wheel is Ayp in
plan view, Figure 14.8.1(a). For an arm angular speed w, the tangential speed of the wheel is wlyp, but this
is not vertical in rear view, so the actual suspension wheel bump velocity Vg is

Vs = walwp cos ¢y
The velocity ratio of arm to wheel R/ is therefore

WA 1 -1 -1
Rajw=-2—_ ~  Trad )
AJW Vs~ Tapcos on [ra s /m-s ]
Note that the pivot axis plan angle 6, does not appear in this expression. Neither does any influence of the
angle of the arm in side view, because this has been incorporated by using the plan length /yp, which may
in fact vary somewhat through bump movement, because

lwp = lW COS 0A

For any given bump position, 0, follows, whence hyp and Ra/w:

1

Ryw=——
AW Ky cos 04 cos ¢y

With some consideration, the above can be applied to any of the rigid-arm suspensions listed above.

The second part of the motion ratio then follows from the position of the spring or damper. Figure 14.8.2
shows the rigid arm in elevation viewed along the pivot axis. The spring may not be in the plane of the
elevation, but will be close to it, with out-of-plane angle a.

7 v, OA

2 At s orsres r,__’

Figure 14.8.2 Rigid arm suspension with spring—damper unit, shown in elevation.
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The rigid-arm analysis is now easily completed as for analysis of the output of the rocker:
Vo = waly cos i,
Allowing for the out-of-plane angle ay, the spring compression velocity is
Vkcosag =V,
SO

Vi
COS‘/’zw iy cos i, B

Vk =bh A
cos ag cos ag lwcos B cos

Hence, the spring motion ratio Ry is

Vk b cos i,
R = -2 =2
Vs Ly \cosfa cos ¢, cosag

This is very similar to the expression for a simple rocker, but includes effects from the angles ¢, and a.

As in the case of the rocker, judicious choice of s, at zero bump will give a rising rate, or not, as desired,
rising rate occurring for i, as shown, the angle reducing with bump action, increasing the effective damper
moment arm. If anything, this is easier to design than an extra rocker because the angular motion of the
suspension arm will generally be less than for a rocker, and the smaller angle makes a more linear
progression possible. For example, a bump deflection z, of, say, 100 mm on an effective arm length /,
which may be as much as 1.3 m for a transverse arm or swing axle, gives an angular bump motion of the
arm of about 4-5°. For a trailing arm of length 0.4 m, the angle is 15°.

14.9 Double Wishbones

The double wishbone or double A-arm suspension is a little more difficult to solve than the simple rigid
arm. As before, it is necessary to establish a motion ratio between the suspension bump velocity and the
angular velocity of the arm which operates the spring or damper, or operates the pushrod to the rocker for a
racing car. Figure 14.9.1(a) shows the basic configuration.

(a) (b)
camber 1
14 ¢, 9
b e
d
4
- (A D
c
4, Dap ¢,
4
zT A s
]
1
\
< ETF ac
1

Figure 14.9.1 Double-wishbone suspension: (a) position diagram; (b) velocity diagram.
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If the linear bump camber coefficient of the suspension is already known, then a particularly simple
method is possible. The linear bump camber coefficient egc is the rate of change of wheel camber angle y
with suspension bump, arising from suspension geometry:

Y
=— ad/m
€BC1 dzs (rad/m)
For a suspension bump velocity Vs, and for areasonably constant ¢, usually an adequate approximation
for the present purpose, the wheel camber angular velocity is
dy dzg

— = &c1 — = &gc1 V.
a BCL g, BC1VS

If the bump camber rate is highly varying, then the local value should be used, allowing for the quadratic
bump camber coefficient egcy:

2
YBC = E€BCIZS T EBC2Z5

Y
EBC = B &pc1 +2¢epcazs
S

From Figure 14.9.1, the vertical velocity of B differs from the vertical velocity of F by the camber angular
velocity multiplied by the lateral difference of position e, where

e=Xg—Xp
The vertical velocity of B is therefore
Vg = Vs — eepcVs = Vs(1 — eepc)
Hence, the motion ratio Rg/s of ball joint B to suspension bump is
Rpys = 1 —eepc

Realistic values are ¢ =0.1m and egc =1 rad/m, which will give Rg/s a value of 0.9, a substantial
deviation from 1.0 which should certainly be included in the analysis.

In the absence of prior information on the bump camber coefficient, a velocity diagram may be
considered, as in Figure 14.9.1(b). This is more easily constructed by initially assuming an angular
velocity wap for the lower link, rather than a bump velocity of the wheel. The body is deemed to be
stationary, so points A and C are fixed points, with zero velocity, and therefore appear as a and c at the
origin of the velocity diagram. The tangential velocity of B relative to A is wap/ap, and the line ab in the
velocity diagram is perpendicular to link AB, the length of ab being the tangential velocity at the diagram
scale. This establishes point B. Line cd is perpendicular to CD, and bd is perpendicular to BD; the
intersection gives point d.

To obtain the velocity of F, at the bottom of the notionally rigid wheel, in the position diagram project
line DB and drop perpendicular from F, giving E. In the velocity diagram, the rigid wheel with the wheel
upright is solved by scaling. Hence,

be BE
db DB
giving point e. Draw the perpendicular from e. DBEF is a left turn, so dbef is also to the left. Use
ef EF
de DE

to give point f. Finally, drop the perpendicular from f to the vertical axis, giving point g.
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This completes the velocity diagram to some convenient scale for some angular velocity wap of the
lower arm. This methodology may, of course, form the basis of a computer program where repeated
analysis is desired.

The velocities of interest may now be read from the diagram:

(1) The vertical velocity of the point F, that is, the suspension bump velocity, Vs, is represented by
ag (Vs=Vga)-

(2) The wheel scrub (lateral) velocity Vs is represented by fg.

(3) The tangential velocity of D relative to B, Vg, is represented by bd.

(4) The tangential velocity of D relative to C, Vp,c, is represented by cd.

Hence the following may be deduced:

1

(1) The motion ratio of the lower arm to suspension bump, in units rad s Yms = rad/m, is

_was _ VB

Vs lanVs
(2) The camber angular velocity
dy _ Vb/B
dt b
(3) The bump camber coefficient
1dy  Vpm lab

Epe = —— = —
BC Vs dt ZDB Vs lDBlag

(4) The basic roll centre height (unrolled)

1 I
hge ==T-%
RC ) lag

In the present context, it is the velocity ratio that is of interest. The lower arm may then be analysed as a
rocker output for the spring or damper drive, as was the rigid arm, to give the overall motion ratio.

14.10 Struts

The strut suspension is the usual choice nowadays for the front of passenger cars. The use of a strut at the
rear is a little unusual, but has featured in several cases.

The usual strut incorporates the damper into the body of the strut, and has a surrounding spring. An
alternative design, the damper strut, has only the damper in the strut body, with the spring acting separately
on one of the arms. Geometrical considerations are the same, although, of course, in the latter case it is the
arm which must be analysed for the spring motion ratio.

Opverall, the method of analysis is similar to that of the double-wishbone suspension. Figure 14.10.1(a)
shows a strut suspension. This is in fact the simpler version where the strut axis passes through the ball
joint at B.

If the bump camber coefficient is already available, then the vertical velocity Vg of B is given by

VZB = Vs(l — 6‘6‘]3c)
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Figure 14.10.1 Strut suspension: (a) position diagram; (b) velocity diagram.

where
e=Xp—Xp
The tangential velocity of B is then
Vzp
Vo =
BA ™ cos b,

and the damper compression velocity Vp is
Vp = Vgja cos(¢; + 62)
Hence,

cos(¢p; + 6,)

RD=—:(1—ech) CO§¢
S %1

Realistic values may give a motion ratio below 0.9, in contrast to the naive expectation of a value close

to 1.0.

The velocity diagram is shown in Figure 14.10.1(b). The body is stationary, so A and C are fixed points,
appearing as a and c at the velocity diagram origin. Construction proceeds by assuming an angular velocity

wap for the bottom link:

Vi/a = wagli

perpendicular to AB, giving point b representing Vp in the velocity diagram. Velocity Vg is the vector
sum of longitudinal and tangential components, so construct a line through b perpendicular to CB and
through c parallel to CB to intersect, giving point d. Point d represents the velocity of point D, which is a
point notionally fixed to the lower part of the strut, and instantaneously coincident with the upper fixture

point C. The damper compression velocity is represented by cd.
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To obtain the suspension bump velocity, extend DB and drop the perpendicular from F to E. Use
be BE ef EF
bd BD’ de DE

to give e and f, and drop the perpendicular from f onto the vertical axis to give g. Point f represents the
motion of the base of the wheel, and g represents its vertical component.
From the velocity diagram can be obtained:

(1) the suspension bump velocity represented by ag;
(2) the wheel scrub velocity (fg);
(3) the tangential velocity of B relative to D (db).

Hence, the following may be calculated:

(1) the motion ratio R of the lower arm to suspension bump

R @w _ Vam

Vs Iag Vasc
(2) the camber angular velocity

dy _ Vep

dr Isp
(3) the bump camber coefficient

dy/dt V; It
£pc = v/de _ Ve _ bd [rads™ /ms™']

Vs  lhpVs o lag
(4) the basic roll centre height (unrolled)

1, I
—_T
hyc 2 1

On front suspensions in particular, the damper axis is frequently aligned such that it does not pass
through the ball joint at B, but rather inside or outside it. In that case the preceding analysis is still
applicable, with the following provisos:

(1) The angle 6, used is that of the damper axis, not that of the steering axis CB.
(2) To obtain e and f, still use the steering axis line CB extended.

14.11 Pushrods and Pullrods

In formularacing cars in particular, it is normal practice nowadays to use double wishbones with a pushrod
driving a rocker which operates the spring and damper. These can be solved readily by the processes
already described, treating the motion ratio as the product of the sequence of ratios arising from the
particular system. This generally involves:

(1) the relationship of wheel displacement to bottom arm angle;
(2) the relationship of bottom arm angle to pushrod displacement;
(3) the rocker ratio.
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For apractical racing suspension, the wishbones are long and the pushrod angle may be quite low, giving
a low velocity ratio. This gives proportionally larger pushrod forces, but the reduced stroke allows a
compact rocker. Pullrods have been used in the past, but have now largely given way to pushrods. The
pullrod analysis is very similar to that of the pushrod.

The rocker axis may be rotated to lay the damper along the vehicle. With the pushrod system this allows
the front dampers to lie above the driver’s legs, permitting the best aerodynamic shape for the front part of
the vehicle.

In these more complex systems, when analysed as a series of two-dimensional sub-mechanisms, it may
be necessary to incorporate some cosine factors to correct for out-of-plane motions, but these are usually
quite small.

14.12 Solid Axles

Solid car axles, driven or undriven, may be located either by leaf springs, the Hotchkiss axle if driven
(‘live’), or, more often nowadays, by links. The springs and dampers may act on the axle itself, or on the
links, as in Figure 14.12.1.

For bump analysis, if the spring or damper acts directly on the axle, as in Figure 14.12.2, above the wheel
centreline, and the springs or dampers are vertical, then the motion ratio is very close to 1.0. However, the
springs or dampers are sometimes angled, inwards at the top, in which case the bump motion ratio is cos g
or cos 6p.

If the springs act on the locating links, then the velocity diagram needs to be drawn, as in Figure 14.12.1.
With this configuration, some rising rate can be achieved by angling the springs or dampers in side view.
The vertical wheel velocity is found from the wheel centre, and its relationship to points B and C. The axle
angular speed w, is

on — Ve
A7 e

(a) (b)

R

Lz L

Figure 14.12.1 Example axle with link location, using a Watt’s linkage at each end.
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(a)

R.C.

¢

Figure 14.12.2 Inclined springs and dampers on an axle.

and the pitch/heave velocity ratio or coefficient e5py is

EAPH = % [rad/m]
S
To analyse the roll stiffness or damping of the vehicle, for a simple axle, consider the vehicle to roll about
theroll centre for the axle, which is the point of lateral location in the centre plane. Forexample, in the case of
the use of a Panhard rod for lateral location, it is the point at which the rod pierces the longitudinal central
vertical plane. The velocity diagram in Figure 14.12.2 shows that the damper velocity Vp, is

Vb = wlicos(¢p; + Ok)
so the damper velocity ratio in roll is
Rig = licos (¢, + 0k) [ms™'/rads™ =m/rad]

This will generally be substantially less than would be achieved with the springs acting directly at the
wheels. This is because /; is typically only about 0.7 of half the track, to allow the springs to clear the
wheels. This substantially reduces the roll stiffness, which may therefore be supplemented by an anti-roll
bar. On the other hand, on a driven axle, the lower roll stiffness may be held to be an advantage, giving
better traction during cornering.

For springs or dampers acting on the links instead of the axles, the above process gives the velocity of the
end of the link (without k). The link is then analysed to obtain the actual damper velocity.

14.13 The Effect of Motion Ratio on Inertia

Consider a suspension with a point mass at some position on the links, having a motion ratio R, relative to
the relevant suspension motion (wheel movement). Initially consider this motion ratio to be uniform, that
is, not dependent on the suspension bump position. In this case,

_dm _ Xm_ Xm

— (constant R;,)

R, =——
" dZs Zs zZs



Installation Ratios 291

where the movement of the mass is denoted by x,,,. This is not intended to suggest that the mass actually
moves in the x-coordinate direction, but to indicate that it is not generally in the same z-direction as the
suspension. The velocity of the mass is then

Sm = RmZs = RnVs
and the acceleration of the mass is
X¥m = Rm Zs = RnAs
The force exerted on the mass to provide its acceleration is
Fn = miy,
Neglecting friction, the corresponding force Fg,, at the suspension point, by virtual work is given by
Fsn 6z = Fpy xp

giving

dxp,
Fsm = m = RmFin
dZs

This result also follows naturally from the concept of a frictionless lever. The force required at the
suspension is then

. 2 ..
Fsm = RyFin = Rym Xy = mR; Zs

Therefore at a constant motion ratio the effective inertia, seen at the wheel, of a point mass, is just mRﬁq.
Although perhaps slightly laboured, this development shows the assumptions in the theory behind this
result.
The case of variable motion ratio is slightly more complicated. By definition, the motion ratio is, for
linear or non-linear cases,

Rmfdxmfﬁ

o dZS 25

The time rate of variation of the motion ratio can usefully be expressed in terms of its spatial variation and
the suspension velocity:

. dR,, dR, dzs .
R, =—2 = 2 R
™ dzsde S
The velocity of the mass is simply
Xm = RmZs

The acceleration of the mass in terms of zg follows by the usual rules for differentiation of a product of two
variables:

Fm = R Zs + RmZs
The force at the suspension is then

Fsm = RuFm = Rum¥n = mRy (R Zs + RinZs)
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giving
Fsm = m(R2, 2 + RyuRinZs)

Substituting the result obtained earlier for the time derivative of Ry, finally gives
Fsm = m(R} £ + RnR/, 25)

For a constant motion ratio, this reduces to the earlier simple expression deduced for that case, as it should.
When the motion ratio is not constant, that is, actually varying with zg, then there is no simple equivalent
inertia.

14.14 The Effect of Motion Ratio on Springs

The spring stiffness depends on a spatial derivative of spring length, so the effect of the motion ratio of the
springs is in general different from the effect on inertia or damping coefficient. The spring may be linear
(constant stiffness) or non-linear, and the motion ratio may be uniform in zg or non-uniform. It is generally
believed that the effect of motion ratio on effective spring stiffness as seen at the wheel is proportional to
the spring motion ratio squared. However, this is true only for a constant motion ratio.
Consider first a linear spring with constant motion ratio Ry (recall that subscript K is used for springs
because subscript S has already been allocated to ‘suspension’). By definition, the motion ratio is
_ de _ jCK
K= dZs - 23
The spring force is Fx and the spring stiffness is Kx. By the principle of virtual work, or consideration of a
frictionless lever,

Fx 6xx = Fsk 6zs
where Fsi is the effective spring force seen at the active suspension point (wheel motion). This gives
Fsk = RxFx
The effective stiffness seen at the wheel, with constant R, is

dF dF dFgd
i) S K —Kﬂ:RZKKK

SK — K7 — K
dZS dZS dXK dZs

So, for this simple case, the effective stiffness simply depends on RZ:
Ksk = RyKx (constant Ry) (14.14.1)
Now consider a non-linear spring with a constant motion ratio:

dFSK _ dFSK dX](

Kok = - LR
SK dZs dXK dZS
d dXK
— — (RyFy) —>
de ( K K) dZs
But the motion ratio Rk is constant, so
dFg 5
KSK :RK' - 'RK :RKKK

dXK
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Table 14.14.1 Example values of rising-rate stiffness effect

Parameter Symbol Units Value
Suspension force Fs kN 4.000
Motion ratio (ref) Rx — 0.500
Spring force Fx kN 8.000
Spring stiffness Kx kN/m 128.0
Rising rate dRk/dzg m™! 2.000
Basic stiffness KxR% kN/m 32.0
Rising rate stiffness FxR'x kN/m 16.0
Total stiffness Ksk kN/m 48.0

so the non-linearity of the spring does not alter the basic effective stiffness relationship, although, of
course, the local value of the spring stiffness must be used.
Consider now a linear spring with varying motion ratio, R'x # 0. The suspension force is as before:

Fsk = RxFx
where the local value of the motion ratio must be used, according to zs. By the usual differentiation of a

product,

dFSK d dFK dRK
= =—(RkFx) =Rx- —
SK dZs dZs( K K) K dZs + dZs

-Fx

The first term is as in equation (14.14.1), but there is now also a new term. The total stiffness is

dR
Ksk = R3Kx + Fx ?K (14.14.2)
S

This additional second term is Fx Rk. For the special case of constant Rk the derivative vanishes and the
second term is zero, with equation (14.14.2) reducing to equation (14.14.1). The usual practical case is
with a derivative somewhat positive, that is, a ‘rising-rate’ suspension. With a large spring force FY, this
can have a considerable effect on the stiffness seen at the wheel. By way of example values, see
Table 14.14.1. In this example, the rising rate is only 2/m, about 0.05/inch, but the effect is substantial.

When a non-linear spring is used with a variable motion ratio, the theory is similar to the above. No
specific conclusions can be drawn, although equation (14.14.2) continues to apply.

Changing the motion ratio of the springs does not allow the use of reduced-mass springs. Of course, a
smaller motion ratio reduces the spring stroke required but correspondingly increases the force required
from it. These factors are simply in the ratio and inverse ratio respectively of the motion ratio, and have no
net effect. Also, by energy considerations, at least in the case of a linear spring it is fairly clear that an
intermediate lever does not reduce the mass required to store a given amount of energy, the work done in
bump action. This is confirmed by more detailed analysis.

14.15 The Effect of Motion Ratio on Dampers

It is generally believed that the effective damping coefficient is proportional to the damper motion ratio
squared. This is only true for a linear damper, and may be seriously in error for non-linear cases as found on
many real dampers. However, a varying motion ratio is of no special significance for dampers, unlike
springs, only the local actual motion ratio value matters.
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Consider a linear damper with a constant motion ratio. It is evident that

Fp=CpVp
Vi = RpVs

FSD =Rpfp

FSD = RDCDVD = RZD CD Vs

Csp=R}HCp

so in this case the effective damping coefficient simply depends on the motion ratio squared.
Now consider a linear damper with a varying motion ratio,

FD = CDVD
Vb=RpVs
Fsp=RpFp=RpCpVp = R4 Cp Vs

as before. Only the local value of the damper motion ratio Rp affects the damper; unlike the case of a
spring, the gradient Rp has no effect.
Consider now a non-linear damper exerting a damper force Fp, related to the damper velocity V, by

FD = C]VB

where the exponent 7 has a value 1 for a linear damper (notionally pure viscosity), but may vary in practice
from zero (effective Coulomb damping) to 2 (pure fluid dynamic damping). At a damper motion ratio Rp
and suspension bump speed Vs, the damper speed, positive in compression, is

Vb = RpVs
The actual damper force Fp is
Fp = Ci(RpVs)"
and the suspension damper force Fsp at the wheel is
Fsp = RpFp

Hence the effective damping force at the wheel is

Fsp = iR, "V

The shape of the influence of V5 on Fp is retained as V{, but the actual coefficient is scaled by the damper
coefficient ratio, which in this case is

Rpc = R,
Some special cases to be considered are the following:

(1) Exponent n =0, corresponding to dry Coulomb friction (old-fashioned snubbers) or to hydraulic
dampers with a sudden-acting blow-off valve. In this case the damper velocity makes no difference,
as long as it is moving, so the coefficient ratio and the force ratio are both equal to the velocity
ratio:

RDC = RD (n = 0)
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(2) Exponent n=1, corresponding to a linear damper:
Roc =R} (n=1)

(3) Exponentn =2, corresponding to a hydraulic damper with a valve that is fixed, (e.g. fully closed at low
speed or fully open at high speed):

Roc =Ry (n=2)

(4) A representative intermediate case at damper speeds around the knee of the curve, with n~ 0.5,
giving
Rpc = R]l).S (I’I = 05)

It is common for the motion ratio to be around 0.7, sometimes even as low as 0.4, from which it will
be apparent that the damper coefficient ratio will vary very widely for different damper force—speed
relationships.

Considered from a design aspect, the characteristic required at the wheel is the starting point, which is
transformed by the motion ratio to the required damper characteristic. A low motion ratio therefore calls
for a high damping coefficient for the damper itself. The use of a low or high motion ratio does not allow
the use of a smaller or lighter damper. A low motion ratio reduces the stroke required, but correspondingly
increases the damper force needed.

14.16 Velocity Diagrams in Three Dimensions

The three-dimensional velocity diagram is, in principle, a straightforward extension of the idea of the two-
dimensional velocity diagram, but in practice is a good deal more difficult conceptually. All velocities
have three components, €.2. VA = (Vax,Vay,Va,) for a point A, this velocity being ‘plotted’ in a three-
dimensional velocity space. The method used is in effect geometrical constructions in a three-dimensional
space. Actual drawing-instrument methods are not practical, although the results can be drawn as iso-
metrics, and the solution must be by algebraic methods. The solution can often use existing three-
dimensional geometry library routines. The alternative method of determining the velocities by a small
displacement using an existing suspension position solver is generally easier, although imperfect in
principle because of the increment size required for accuracy. The three-dimensional velocity diagram has
the merit of being an exact method in principle.

In all cases, the position of the suspension must first be fully known. In the case of a double-transverse-
arm suspension, proceed by specifying an angular velocity (2 of the bottom arm. The tangential velocity of
the lower outer ball joint point A is then {2R, with a direction perpendicular to the plane of the lower arm.
The direction cosines (/, m, n) of the normal to the plane are therefore also the direction cosines of the
velocity direction, so the velocity components can be deduced, giving

Va = (Vax, Vay, Vaz) = Va(l,m,n)

The velocity of the upper outer ball joint B relative to the velocity point a for physical point A is just
tangential. Therefore itis in a plane through velocity point a, perpendicular to the line from one ball joint to
the other. The direction cosines of the normal for this plane are therefore those of the line AB. This gives a
known plane in the velocity diagram through the known velocity point a. Also, the upper ball joint velocity
must be perpendicular to the plane of the upper arm, giving a line from the velocity origin parallel to the
normal to the plane. The intersection of the line and the plane in the velocity diagram gives point b, the
velocity of upper ball joint point B.

To complete the solution of the wheel carrier/slider, the velocity of the steering-arm/track-rod end ball
joint is required. Unlike in the case of two-dimensional velocity diagrams, in three dimensions a solid
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component does not have a similar velocity image, and the image is distorted. The clearest method is to
drop a perpendicular from the steering-arm ball joint C onto the steer axis AB, giving a foot point F. Now a
straight line in an ideally-rigid object does map into a straight-line image in the three-dimensional velocity
diagram, so velocity point f can be calculated by simple proportion from velocity points a and b, in the
same ratio as F lies on AB or AB extended. The velocity of C relative to F is purely tangential, and is
therefore perpendicular to the plane ABCF, which has a normal with solvable direction cosines. Hence, the
direction cosines of the line fc can be found, giving a line fc, so far of unknown length, from the known
point f. Considering the rack end of the track rod, this point D has a known, specified velocity depending on
the rack only, usually zero, giving velocity point d. Relative to D, the track-rod end C has a velocity
perpendicular to the line CD, so it is in a plane in the velocity diagram perpendicular to line CD and
containing the origin. The line from f intersects this plane at velocity point ¢ for physical point C,
completing the basic solution of the wheel upright. The three known velocities for points A, B and C can
now be used to calculate angular velocities about the X, Y and Z axes, that is, the bump camber, bump caster
and bump steer angular velocities.

To solve the scrub velocity at the contact point D, the wheel is treated as locked in rolling rotation, so the
wheel and wheel carrier are considered to be a single rigid component. The contact point D is therefore a
fixed point on the carrier. Drop a perpendicular from D to a new foot E on the ball joint line AB produced,
solving e on ab by the same proportion as E on AB. Also, use the tangential velocity of C and the length of
FC to obtain an angular velocity of the carrier about the axis AB. Apply this to DE to obtain a relative
tangential velocity of D from E, which has the direction of the normal to the plane ABFED, hence solving
the magnitude and direction of the velocity of D. This resulting velocity

Vb = (Vox, Vby, Vo)

contains the longitudinal scrub velocity Vp,, the lateral scrub velocity Vp,, and the bump velocity Vp,. All
the bump coefficients then follow easily; for example, the local longitudinal bump scrub rate coefficient is

e _ VDx
BScd,X = T, —
' VDZ
and the local lateral bump scrub rate coefficient is
& _ Yoy
BScd,Y =
¢ VDZ

Obtaining values for these over a range of suspension bump positions, the usual coefficients may be
obtained, using

EBScd = €BScd0 + €BScd1 ZS

applied in longitudinal and transverse directions.

In principle, to find the suspension bump velocity, find the wheel centre velocity, and deduce the velocity
of the lowest point of the wheel arc, allowing wheel rotation, that is, the lowest point of a circle on the
wheel centre with radius equal to the wheel loaded radius. The wheel centre is a fixed point on the wheel
carrier. The velocity of the lowest point is the velocity of the wheel centre plus the change in height due to
camber change from wheel loaded radius, camber angle and camber angular velocity. Considering the
wheel as free to rotate allows the bottom point to have an extra motion giving a tangential velocity
component, which is purely horizontal. This leaves the lateral scrub component and the bump velocity
unchanged. The result is therefore the same as above — simply the vertical component of the locked-wheel
bottom point velocity, namely Vp,.

For a strut-and-arm suspension, again begin with a bottom arm angular velocity and the bottom ball
joint point A. Obtain the velocity component directly towards the fixed trunnion point B. Point C on the
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slider, instantaneously coincident with B, has a velocity V¢ directed along the slider, but with a component
in the direction of AB equal to the component of V, in that direction. This is because for two points on a
rigid body the separation is constant, so the velocity components along the line of the points must be equal.
Hence, vector dot products can be used to obtain V. This gives the velocity of two known points of the
carrier/slider. The rack end D has a known, independently specified, velocity, probably zero. To solve for
the steering-arm/track-rod end E, at the track-rod end this has a velocity in a plane perpendicular to DE
from the velocity point d. Also, considering it as the steering-arm end, drop a perpendicular from E onto
the line AC to foot G, solving g by proportion. The velocity Vg, is perpendicular the plane ACGE, giving a
line in the velocity diagram from g, intersecting the plane from d at the desired point e. Hence, the carrier/
slider has three known velocity points, and is solved. The velocity of the contact point can be solved as for
the double-transverse-arm suspension.

Other suspension types can be solved using similar methods. The use of three-dimensional geometrical
routines in the process of solution is apparent. In position analysis, the two main three-dimensional
procedures are the ‘pole-on-triangle’ and the ‘tripod’. Correspondingly, two main velocity diagram
procedures can be used, rather than the ad hoc approach above.

The ‘pole-on-triangle’ velocity diagram procedure is required to solve the velocity of a point fixed
relative to a base triangle which moves but is of unchanging shape and size. The first perpendicular
required is that from P ‘down’ to F in the plane of the triangle. Point F has factors for its position relative to
the three corners of the triangle. The velocity of F is found by applying the same factors to the corner
velocities. Also drop the perpendicular from the point P, into the line P,P; of the triangle to give a foot P,.
The velocity of P, may be found by proportion, using the interpolation factors of the physical point P, on
P,P;. Next, calculate angular velocities about the rectangular axes aligned with P,P; and P,P,. Use these
angular velocities to calculate the velocity of P relative to the velocity of F. Chapter 15 gives further details.

The ‘Tripod’ position problem has an analogue in the tripod velocity problem, but whereas the firstis the
intersection of three spheres, the latter is the intersection of three planes in the velocity diagram, associated
with three simultaneous linear equations. Consider rod 1, with base velocity (14, v;, wy) and rod centreline
direction cosines (/;, my, n;). In the velocity diagram, the known base velocity gives a point, and the
velocity of the other end of the rod must be in a plane through that point, the plane having a normal with
direction cosines the same as the rod. The equation of that plane is simply

Lhu+mpy+mw = Lu +mv, +nyw

There are three such equations, so the unknowns (u, v, w) can be solved, this being the intersection point of
the three planes. Tantalisingly, it is possible to solve explicitly using a direct line-and-plane method, using
say rod 1 to give a plane, and rods 2 and 3 to give a line. This line is of course the intersection of the velocity
planes of rods 2 and 3. The out-of-line velocities of the rod ends are independent because, instantaneously,
they do not act along the rods, they only rotate them about a transverse axis. Taking a pair of rods, the total
velocity of the joint point can be seen as one part perpendicular to the plane of the triangle, and one part in
the plane. The latter part can be solved from the in-plane base velocities by two-dimensional methods,
giving a velocity point. From there, the velocity of P is on a line perpendicular to the triangle, giving a line
to intersect the plane of rod 1. This is, however, actually more difficult to implement than the general three-
plane method.

14.17 Acceleration Diagrams

Acceleration diagrams are important in general mechanism design. In the case of vehicle suspensions,
there are two applications. The first is a determination of the accurate accelerations of the suspension
components to evaluate the acceleration forces. The second is for use as a derivative in the evaluation of
velocity diagrams. Acceleration diagrams are quite easy in two dimensions for simple mechanisms such as
pin-jointed ones (e.g. wishbones), and somewhat trickier for struts. In three dimensions they can become
very tricky.
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15

Computational Geometry
in Three Dimensions

15.1 Introduction

The numerical or computational solution of a suspension geometry problem depends heavily on three-
dimensional coordinate geometry, which just is a more complicated variant of the more familiar two-
dimensional flat-plane paper-surface geometry. It is assumed here that the reader is familiar with basic
two-dimensional coordinate geometry and has studied basic three-dimensional geometry and vector
analysis. Presented here is an aide-mémoire of some useful reference material, and the mathematical
solution of some problems particularly relevant to the solution of suspension geometry.

Although it seems physically that a point is simpler than a line which is simpler than a surface, this belies
the problems of mathematical representation. A surface can be represented by a single equation. It takes
two equations to represent a line (the intersection of two surfaces) and three equations to represent a point
(the intersection of three surfaces). In fact, it is often most convenient to represent a line by three equations,
in its parametric form.

In general, algebraic variables are in italic, to indicate that they represent a value. Vectors are indicated
by bold type, but they are still variables so they are in bold italic. The point named Py, in non-bold roman
(upright) script has a position vector P, in bold italic, which has a magnitude P}, which is non-bold italic.

15.2 Coordinate Systems

Overwhelmingly, the coordinate system of greatest importance and use is the one of simple rectangular
axes, typified by the usual (X, Y, Z) system. However, cylindrical coordinates are sometimes used, in effect
just polar coordinates plus a length dimension. This can arise, for example, in the case of a suspension arm,
which rotates about an axis at some arbitrary angle. The motion of the outer end of the arm is an arc which
is not conveniently represented in the coordinate system of the vehicle body, but using cylindrical
coordinates aligned with the axis the movement becomes simply a circular motion.

Sometimes linear non-rectangular coordinates can be used advantageously, as in the case of the PointIT
routine (Section 15.17).

The distance between two points is given by Pythagoras’ theorem in three dimensions, in rectangular
coordinates, by

Las = /(v —x8)* + (a — y0)* + (20 — z8)°

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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This is invariably a positive number, possibly zero. The squares inside the root ensure that the kernel can
never be negative.

The idea of a length, which is never negative, must be distinguished carefully from the idea of a
displacement or position, which may be negative. In a coordinate system, the variables represent positions,
not lengths, and can be negative, indicating a location in the other direction. This distinction between
length and displacement also arises importantly in the case of the position of a point ‘above’ a plane. Given
a specific plane normal, the point displacement from the plane could be positive ‘up’ or negative ‘down’,
for example as in the PointAT routine (Sections 15.21 and 15.22).

15.3 Transformation of Coordinates

Itis often convenient to retain rectangular coordinates but to shift the origin. This may be done to facilitate
algebraic solution of problems, or to improve computational efficiency. Considering base coordinates
(x,y, z), and local coordinates (u, v, w) which are parallel to (x, y, z) but displaced without rotation, placing
the origin of (u, v, w) at Py =(xy, y1, z1) gives

u; = 0; vy = 0; w; =0
Up =X —=X15 V2=Y2—)1; W2=22—1I]

and so on.

Rotation of coordinates is less often required, but is easily achieved. In the base coordinates (x, y, z) the
alternative coordinate system (u, v, w) has the same origin and is rotated such that the direction cosines of
(u, v, w) in (x, y, z) are (L,, my, ny), (1,, m,, n,) and (I, m,, n,,), giving the transformation

u=hLx+ myy + nz

v=ILx+my+nz

w = lyX + myy + nyz
The direction cosines of the secondary axes are not fully independent (nine direction cosines but only three
degrees of freedom), and compatibility must be maintained.

If the origin is simultaneously moved to (xg, yo, Zo) then the combined transformation is

u=ly(x—x0) + my(y —yo) + ny(z —2o)
v =IL(x—x0) + my(y—yo) + ny(z — zo)
w = ly(x —x0) + my(y —yo) + nw(z —2o)

15.4 Direction Numbers and Cosines

Consider a straight line with any two distinct points upon it. By Pythagoras’ theorem the length is

Lp= \/(xz —x1) + =n)+ (2 —-2)
In rectangular coordinates, any set of three numbers, usually denoted (L, M, N), being
(LM, N) = ((x2 = x1), (y2 = y1), (22 — 21))

is called a set of the direction numbers for the line. Points P, and P, and the length L,, may vary, only the
ratios of the direction numbers are significant. The direction numbers are sometimes also known as
direction ratios, but this is not a good name as individually they are displacements.
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In the special case that the length is unity, then the direction numbers have special values called
direction cosines, denoted (/, m, n). Generally

L M N
l=—; m=—; n=—
Ly Ly Lyp
and
lzxzfxll m:yzfyl. nzzzle
L|2 ’ L]Z ' LIZ

The direction cosines are not independent, having the property that their Euclidean length is unity:
Ptm*+n =1

The line makes three angles («, 3, Y), the direction angles, with the three coordinate axes (x, y, z)
respectively, with

I =cosa; m=cosfB; n=cosy

The direction cosines are very useful for representing the direction of a line, or of a displacement, velocity,
acceleration, force, etc. For example, a displacement with components

D = (Dy,Dy,D.) = (ID,mD,nD)

where D is the vector and D is its magnitude. In this case, it is evident that the components are obtained by
using the cosine of the angles with the various axes.

A line may be considered to ‘go’ in either direction, that is, P, may be on either side of Py, so the set of
numbers (—/, —m, —n) is an equally valid set of direction cosines, but with reversed direction.

The direction cosines are (1, 0, 0) for the x axis, (0, 1, 0) for the y axis and (0, 0, 1) for the z axis.

15.5 Vector Dot Product

This is also known as the vector scalar product, obviously because the result is a scalar value (non-vector)
to be distinguished from the vector cross product. Given two vectors A = (44, Va, Wa) and B = (ug, v, Wg),
the dot product is

P:A'BZMAUB+VAVB+WAWB

That is, the matched pairs of components are multiplied and the resulting products are added. The result is
a simple scalar value, without direction.

The great value of the dot product calculation is that the result is equal to the product of the vector
magnitudes and the cosine of the angle between them (considered, if necessary, with a common starting
point),

P=A-B=ABcosf

If the vectors A and B have units of length, then P has units of area.
In the special case when the base vectors are unit vectors, that is, vectors of unit length, @ and b, then

P = Iplg + mamg + nang = cos 6

which provides a valuable method of obtaining the angle between two directions or lines.
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In the event that the angle is a right angle (90°), then the cosine and the dot product must be zero, which
can be a useful check on the perpendicularity of two lines.

A key application of the dot product is in obtaining components of displacements, velocities,
accelerations, forces, etc., along any direction. Given a vector A with components (xa, Ya, Za) and a
line with direction cosines (/, m, n), then the component of A in that direction is

Acomp = Ixa+ My + nza

If the other direction of the line is considered, then all three direction cosines are reversed in sign, and
the component changes sign but retains its magnitude.
Consider, for example, a moving rigid rod AB, with velocities at its ends

Va = (ua,va,wa)
VB = (HB7 VB, M/YB)

The rod end positions are (x4, ya, za) and (xg, yg, zg). Then the direction cosines of the rod, A to B, are

XB — XA YB — YA ZIB —ZA
l=——; m= ;o on=

Lag Lag Lag

The velocity component at A in the direction of the rod itself, that is, the axial velocity of the rod, is, by the
dot product,

Vaaxial = lUp + mva + nwa
Similarly, at the other end,
VB axial = lug + mvg +nwg

For a rigid rod, these two axial components must be equal.
A good example application of the dot product may be found in Section 15.14.

15.6 Vector Cross Product

The vector cross product, denoted

P=AXxB
is itself a vector, with magnitude

P =ABsin6

where the angle 6 is the angle between the two vectors, considered if necessary to be translated to a
common starting point. If A and B have units of length, then P has units of area, and is in fact the area of a
parallelogram defined by the two vectors, that is, twice the area of the triangle that they form. The direction
of the resulting vector is perpendicular to both A and B, being given by the right-hand rule. Where A is the
right-hand thumb, and B is the first finger, then P is in the direction of the second finger. If A and B are taken
in the other order, then the product is reversed in direction, that is,

BxA=—-AxB

The product vector A x B has the property that it is parallel to the normal to the plane containing the
vectors A and B. This is probably its most important feature, as it can therefore be used to generate that
normal vector.
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The actual calculation can conveniently be summarised in a determinant. A generally non-unit vector N
with the normal direction to the plane of A and B is given by the easily remembered form

i k
N=AXB=|xa ya za
XB YB ZB

where (;',}, k) with circumflex marks are unit vectors of the (x, v, z) axes respectively. Expanding the
determinant in the usual way, with alternating signs,

N =1i(yazg —yBza) —J(xazB — XBZa) + k(XAYB — XBYA)
= iNy + jNy + kN,

This calculation of the vector normal to a plane is frequently required in suspension geometry analysis.

15.7 The Sine Rule

The sine rule is occasionally useful in suspension analysis, and applies to three-dimensional triangles as
well as to two-dimensional ones, both being of necessity in a single plane, Figure 15.7.1. However, it is
expressed in terms of the two-dimensional properties of the triangle rather than in direct three-dimensional
terms. For a triangle with sides a, b and ¢, with opposing angles A, B and C,

sinA _sinB _sinC
a b ¢

It is easily proved by dropping a perpendicular. It can equally well be expressed in reciprocal form,
alsinA = b/sin B= c/sin C.

In three dimensions, considering the cross product of various pairs of sides, in each case the magnitude
of the product is equal to twice the area of the triangle. Hence,

L31L12 sin 61 = L12L23 sin 02 = L23L31 sin 93 = 25'1'

Dividing by Li,L,3L3; gives

sinf; sinf, sinf;
Ly Ls; Lyp

agreeing with the sine rule as expressed in two-dimensional terms.

Figure 15.7.1 Triangles for the sine rule, alternative notations.
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15.8 The Cosine Rule

The cosine rule is often useful, much more so than the sine rule. In Figure 15.8.1, the three sides of any
planar triangle are related by

@t =b+ * —2bccosA
or

Pi—a?

SA =
cos he

In three-dimensional terms, the cosine of A is given by the dot product, in local coordinates based on Py, as

(Pz—Pl)-(P3—P1):bCCOSA

with
UrU3 + Vo V3 + Wows
COsA =
L3 Lis
Actually,

P4 = = (B4 V2w + (2 + v+ w2) — (uz — ) — (v3 — v2) — (w3 — wa)?
= 2(u2u3 + v+ W2W3)
=2(P,—Py)-(P3—Py)
=2bccos A

That is,
br+ct—a
A=—"""°%
cos 2bc

proving the cosine rule directly in three-dimensional coordinates.
The component b cos A is sometimes useful, being given by

b+t —d?

bcosA =
cos e

without use of the (computationally relatively slow) transcendental cosine function.

(a) (b)

Figure 15.8.1 Triangles for the cosine rule, alternative notations.
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15.9 Points

In geometry, a point is an ideal concept of location, with zero extension is space, being just a position. It is
often defined as the intersection of two ideal geometric lines having no thickness, but this is applicable
only in two dimensions. In three dimensions two lines do not meet, in general. The point could then be
defined as the intersection of three planes, or of a line with a plane, or of a line with some other surface such
as a spherical shell or a cone.

In practical three-dimensional coordinate geometry the point, having three degrees of freedom, is a
position in space measured by three coordinates. These are the coordinates of the system in use, usually a
rectangular coordinate system, so the point becomes the location (x, y, z). However, a point on a line is
constrained in two degrees of freedom, and may be represented by a single parameter, for example the
parameter of path length s in the parametric representation of a line.

15.10 Lines

The geometric definition of a point as the intersection of two lines (in two dimensions) may be regarded
as somewhat circular, as a line is often defined as passing through two points, that is, two distinct
points are sufficient to define a straight line. This is still true in three dimensions. A straight line can also
be considered to be the intersection of two planes. In general, the intersection of two surfaces gives
a line, not necessarily straight, for example a plane and a spherical shell gives a circle, and in some
cases the line may be in distinct parts, as in the case of the intersection of a plane with a torus in some
positions.

In the main, however, it is the straight line and circle that are of importance. There are several common
and useful alternative forms of representation of a straight line.

(1) The standard form of a line between two points P; and P,:

X—X1p  Y—=yY1 z—1ZI]

X2 — X1 Y2—)1 Zp—

(2) The standard form of a line through P; with direction cosines (/, m, n):

X=X1 _ Y=V _z2—21

I m  n
This is also correct when direction numbers (L, M, N) are used instead, as these are in the same ratio to

each other:
X—X1 Y=y _Z2—Z21

L M N
which is equivalent to the standard form.
(3) The parametric form of a line between two points:

x=x1+f(x2—x1)
y=y1+f2—y1)
z=z1+f(z2—21)

Here, the value of the parameter f controls the position of a point on the line. At P; we have f=0,
whereas at P, we have f= 1. The value of fmay also be negative, with the point on P, to P, extended, or
greater than 1 with the point on P, to P, extended. Calculating a length L,, for P, to P,, it is apparent
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that the displacement of the point from P is

s=fLn

(4) The parametric form of a line with known direction cosines. This is a special case of the above in
which a point P, is considered to be unit distance from Py, that is, L;, = 1. The parameter f then
becomes the actual path length from Py, so, for example,

Xy — X
x:x1+s2 1:x1+sl
where / is the direction cosine, giving in all
x=x1+I[s
=y1+ms
=zi+ns

This parametric form is the most convenient form for general use.

15.11 Planes

The plane can be expressed in a single equation, but in various alternative ways.

(1) The general form is given by
Ax+By+Cz+D=0

Here (A, B, C) are called the direction numbers, and are actually direction numbers of the normal to the
plane. In the general form, the constant D is included in the left-hand side.
(2) The normal form is

Ix+my+nz=p

Here (/, m, n) are the direction cosines of the normal to the plane. The variable p is the signed length of
the normal from the origin to the plane in the direction (/, m, n). Note that, in contrast to the general
form, p appears on the right-hand side of the equation. This normal form is the most useful form
overall.

(3) The intercept form is written as

X 'y z

TR A |

a + b + c
The variables @, b and ¢ are the intercepts of the plane on the x, y and z axes, respectively. In suspension
analysis, this is not a very useful form. By multiplying the intercept form shown by abc the general
form may easily be obtained.

(4) The final way is as a plane through three points. A plane passing through three points Py, P, and P5

having coordinates (x;, y;, Z1) et cetera has the equation given by the determinant
X — X1 y—w Z—I]
Xo=Xx1 ya—y z2—z1|=0

X3—X1 Yy3—)Y1 Z3—Z1
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This form evidently gives preference to the point P, which is treated somewhat as an origin of local
coordinates, and two alternative forms could be written based on the other two points. In local coordinate
variables based on P, the above determinant becomes particularly simple:

u 14 w
U Vo Wp| = 0
us v w3

Expanding the determinant gives:
u(vawz — vawy) — v(upws — uswz) + w(uavs —uzvy) = 0
Comparing this with the normal form
Ix+my+nz=p

itis apparent that the length of the perpendicular from the origin to the plane is zero. This is correct in local
coordinates based on Py, which is a point at the origin and in the plane. The direction numbers of the plane
are evidently

L =vw3—viw,
M = uswy — upws
N = Urvy — Uz

This is the same result as would be obtained by taking the vector cross product of (P, — P;) and (P; — P})
in that order, giving a vector normal to the plane. This vector can then be divided by its length to give
direction cosines for the normal.

15.12 Spheres

Spheres, or perhaps more correctly geometric spherical shells, often arise in suspension analysis. Their
representation is simple, but not always convenient for analysis because the equation is non-linear. For a
radius R; on a centre point (X1, ¥, z1), the distance from the centre point, as simply given by Pythagoras’
equation in three dimensions, is constant, giving

2 2 2
(x=x)'+ -y)'+(-2) =R
This expands to
X2y 4+ 22— 2xx =2y 1y — 22z = R%— (xf—i—yf—i— zf)
where the right-hand side is constant.

The intersection of two spheres is an important practical problem. Where the intersection does occur,
the result is generally a circle, although a single touching point is a possibility in principle. Subtracting the
equations of two spheres gives the equation of a plane. This is called the radical plane of the two spheres.
Itis perpendicular to the line joining the centres, that is to say, the line of the centres is its normal. If the two
spheres do not intersect, then the radical plane lies between the spheres. If they do intersect, then the circle
of intersection lies in the radical plane. Considering two spheres with equations as above, that is,

x2+y2+22 —2x1Xx—=2y1y—2z12 = ¢

X2 Y24 22 = 200X — 290y — 2202 = ¢
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subtraction gives the equation of the radical plane as

Cc1—C
(2 =x1)x + 2 =yi)y + (22— 21)2 = —5—

Dividing this by the length L, between the centres immediately gives the normal form of a plane. The
direction cosines are evidently directed along the line of the centres, so the plane itself is perpendicular to
that line, as would be expected by symmetry.

15.13 Circles

In two-dimensional geometry, circles are easily represented and, although non-linear, are highly analytic.
In three dimensions, the circle can be inconvenient to represent because it may be at any orientation.

The circle is a line, so being the intersection of two surfaces, and requiring two simultaneous equations.
One combination is the plane of the circle with the centre and a given radius. In effect, then, the circle is
represented as the intersection of a plane with a sphere, giving a great circle of the sphere. In some cases,
the circle arises naturally as the intersection of two spheres, probably of unequal radius, as in the case of a
suspension arm producing the circular arc of the outer ball joint.

To represent the circle in this way we can use seven variables: the circle centre (xc, Yc, zc), the direction
cosines of the normal to the plane of the circle (/, m, n) and the radius R. A point has only three degrees of
freedom, so evidently these seven variables contain some redundancy. Actually it is not necessary to
specity the centre, it may be convenient to specify any point on the axis, along with one point of the circle,
(XA, YA, Za, I, m, n, x1, y1, 1), using nine variables. The circle is then perceived as a section of a circular
cylinder.

To actually deal with the circle numerically, it is really necessary to use local coordinates with the
correct alignment. It is most convenient to have one given point on the circle itself (which, in practice, is
usually available) along with the axis, if necessary dropping a perpendicular to establish the centre of the
circle. The local coordinates (u, v, w) then have an origin at the centre of the circle (xc,yc,zc). The third
axis w points along the axis (/, m, n). The first axis « points from the centre towards the known point of the
circle. Considering unit vectors # and w in these directions, the unit vector

y=wXxu

from the cross product gives the desired third axis, perpendicular to the other two, with (&, », w) being a
right-hand set. In more detail

SO

lv = Myny — NMyNy
my = lunw - lwnu
ny = lymy — lumy,

A rotation of the arm or radius by angle 6 from the first position, right-hand about w then gives a local
coordinate position
u = Rcos0
v = Rsinf

w=20
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This position can then be converted into (x, y, z) coordinates as described in Section 15.3. In calculation of
the last axis v by the vector cross product, the correct order of the vectors must be maintained to give a
right-hand set of conventional notation.

15.14 Routine PointFPL2P

Purpose: ‘Point at Foot of Perpendicular onto Line of 2 Points’ — to obtain the point F at the foot of a
perpendicular dropped from a specified point P onto a line defined by two points

Inputs: Coordinates of line points P and P,, and of point P, i.e. coordinates (x1, yi, z1), (X2, ¥2, 22),
(xp, yp, Zp)

Outputs: The foot point coordinates (X, g, zg), and the perpendicular length Lpg

Notes: None

Solution: The required point lies at some fraction f from P, towards P, (where the fraction f may also be
negative or exceed 1). This point has

x=x1+fx2—x1) = (1 = f)x1+ fxz
y=y1+f2—y1)=(1=fy+fm (15.14.1)
z=zn+f(za—z1) = (1= fz1 + fz2
The line from P to (x, y, z) must be perpendicular to the line P,P,. Therefore the dot product (equal to
cos 0) must be zero, requiring
(xp — xp) (32 —x1) + (vp —yp) (2 = y1) + (zF = 2p) (22 = 21) = 0

By substitution, an equation is obtained for the fraction f:

(e 4+ £ —x1)) (02 = x1) + 1+ f 2 —y1)) 2 —=y1) + (21 +f(z2 —21))(z2 —21) =0
x1(x2 = x1) + f2 = x) 2+ 02 —y1) Hf0r =y +zi(z =)+ fz—21) =0
with the result

(x1x2 +y1y2 +2122) — (3] +y7 +77)
Lt

f=

Substituting the value of f back into equations (15.14.1) gives the desired coordinates of the foot F.
Also, the length of the perpendicular is

Lpp = \/(XF —xp)’ + (e —yp)* + (zr — 2p)°

Comments: The method is robust, there is always a solution. There are no particular problems provided
that the line specification points are not coincident, which should be checked early on, and in particular
before the division by L2,.

15.15 Routine PointFPLPDC

Purpose: ‘Point at the Foot of a Perpendicular onto a Line with Point and DCs’ — to obtain the point at the
foot of a perpendicular dropped from a point P onto a line defined by one point and direction cosines
(parametric form)

Inputs: Line point P; coordinates (xy, yi, z;), direction cosines (/, m, n) and point P coordinates
(xp, yp, Zp)
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Outputs: Foot point coordinates (X, Yg, zg), perpendicular length Lpg

Notes: The direction cosines have the property /> + m> + n> = 1. This problem also illustrates a useful
method of minimisation by derivatives.

Solution: A point S is at displacement s along the line from the reference point P;. (The displacement s may
be negative.) The point S is

X =x;+Is
y =y +ms (15.15.1)
z=2z1+ns

The squared length of the prospective perpendicular line PS is

Lys = (x—xp)*+ (y—yp)* + (z —2p)°
By substitution,
2 2 2 2
Los = (X1 + Is—xp)" + (y1 + ms —yp)” + (z1 + ns— zp)

When S is the foot of the perpendicular, the length of the perpendicular is at a minimum. For an
extremum the derivative is zero, so use

dids

is 2(xy+ Is—xp)l + 2(y) + ms —yp)m +2(z; + ns—zp)n =0

Collecting terms,
(x1/+ yim + z1n) +s(12 +m?+ n2) — (xpl + ypm + zpn) =0
which gives the value of s as
s=(xp—x1)l+(yp—y1)m+(zp —z1)n (15.15.2)

Substituting this value of s into equations (15.15.1) will give the desired coordinates of the foot F. The
length of the perpendicular is then

Lpp = \/(XF —xp)* + (vr —yp)* + (27 — 2p)

Comments: There is always a solution, and the method is robust.

15.16 Routine PointITinit

Purpose: ‘Point In a Triangle initialisation’ — to obtain the factors for location of a point in the plane of a
triangle, in terms of the triangle corner point coordinates. This is for later use by PointIT, after the
triangle has moved, carrying the point P with it. The point P must be accurately in the plane of the
triangle, but not necessarily within the bounding sides of the triangle.

Inputs: Coordinates of the three triangle-defining points Py, P, and P, and of the in-plane point to be
analysed P
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2D ]

Figure 15.16.1 Factors f, and f; for PointITinit and PointIT.

Outputs: The factors f, and f;, Figure 15.16.1

Notes: The coordinates of a point P in the plane of a triangle may be expressed symmetrically by

xp = fix1 + faxa + f5x3
yo = fiyi + oy + f3y3 (15.16.1)
zp = fizi + 222 + f323
The additional factor f; is
fi=1-fh—fs (15.16.2)

Slightly more simply, using only two factors, it may be represented by

xp = x1 + fo(x2 — x1) + f5(x3 — x1)
o =+L02-y)+ A0 —0) (15.16.3)
» =1+ folza—21) +filzz —21)
Using local coordinates u=x —x;, v=y—y; and w=z —z,
up = four + fauz
vp = fova + fiv3 (15.16.4)
wp = fowy + faws
The local coordinates have origin at P,. In effect, non-rectangular coordinate axes are used for the

factors. The first coordinate axis is along P P,. The second is along P,P3, not perpendicular to the first.
A vectorised version of this routine solving many points is useful.

Solution: Equations (15.16.1) give three simultaneous equations for f;, f> and f3. In view of the additional
equation (15.16.2), this implies that the equations are over-specified. They are, however, consistent
provided that P is in the plane of the triangle.

Use any two equations from (15.16.3) or (15.16.4) to solve for f, and f;, for example,
Hlx2—x1) + f5(x3—x1) = xp — X
L2 =y1) + A3 =y1) =y -0

These two simultaneous equations may be solved in the usual way. The dividing determinant of the
coefficients is

d=(x2—x1)(y3=y1) = (x3 = x1)(y2 = y1)
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Then

f= (xp = x1) (3 —y1) = p —y1) (%3 — x1)
T d

= (e =y1) (32 —x1) — (xp — x1) (y2 = y1)
T d

The second f could alternatively be solved by use of one of the equations in (15.16.4).

Comments: Note that even for a well-conditioned problem (a ‘good’ triangle, with points nowhere near in
line), data sensitivity may result in an attempt to divide by zero; that is, d = 0 may occur, or d very small
may occur, for example for a triangle parallel or nearly parallel to the xy plane. This is a data sensitivity.

The normal to the triangle has direction numbers given by the cross product (P, — P;) x (P3 — Py).
In local coordinates this is given by

i j k
N= Uy Vo3 Wy
us vy w3

SO

N =i(vaw3 — v3wy) + J(uzwy — uaw3) + k(uavz — uzvy)
The third of these terms is
N, =k {(x2—x1)(y3 —y1) — (x3 = x1) (2 — 1)} = kd

so, in the method used in the example, the divisor is the z component of the normal to the triangle. This
gives the physical interpretation to the data sensitivity issue. N, = d will be zero, or very small, when
the triangle normal is perpendicular, or nearly so, to the z axis.

Even for a well-conditioned problem with a good triangle shape (the three defining points not near to
being on a straight line), the solution route must be correctly chosen. To avoid inaccuracy in critical
cases, calculate the components of the normal and select the one of largest magnitude. This indicates
which two equations from (15.16.3) will give the best solution route.

The triangle can be any shape, it does not require any identifiable direction, so it may be equilateral if
desired.

15.17 Routine PointIT

Purpose: ‘Point In a Triangle’ — to obtain the point in a triangle given by the factors obtained by PointI Tinit.
The triangle may have moved in any way, but must retain its shape.

Inputs: Coordinates of the three new triangle points P;, P, and P3, and the factors f5, f3

Outputs: The sought point P coordinates (xp, yp, zp)

Notes: The new triangle must retain its shape (the side lengths must be unchanged). The points must be
presented to PointITinit and PointIT in the same order. A vectorised version of this routine solving
many points is useful.

Solution: The desired point is given simply by
Xp = X1+ fo(x —x1) + (3 — x1)
yo =yi+H02—y1)+ 03— 1)
zp =21+ folza—z1) + fa(zzs —z1)

which is the same as (15.16.3).
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Comments: This uses the non-rectangular coordinate system of the triangle sides. See Section 15.16 for
further discussion. The symmetrical solution uses all three factors and three multiplications per
variable. However, it is probably more accurate in most cases to use the equations above.

15.18 Routine PointFPT

Purpose: ‘Point at the Foot of a Perpendicular into a Triangle’ — to obtain the coordinates of the foot of a
perpendicular from point P into the plane of a triangle P,P,P;

Inputs: Coordinates of the triangle points Py, P,, P; and of the point P

Outputs: Coordinates of the foot point F, and the length Lpg

Notes: None

Comments: The three points of the triangle define a plane, and this routine is just a pseudonym for
PointFPPI3P.

15.19 Routine Plane3P

Purpose: ‘Plane of 3 Points’ — convert to normal form (/, m, n, p)
Inputs: The coordinates of the three triangle points

Outputs: /, m, n, p—the direction cosines (/, m, n) of the normal to the triangle plane, and p, the length of the
normal from the origin to the plane in the direction (/, m, n). Usually the sign of p is positive, but the set
of four variables may have all signs reversed with valid results.

Notes: Arguably, one set (/, m, n, p) represents one surface of the plane, while (—/, —m, —n, —p) represents
the other surface, but this is not a significant issue here.

Solution: Consider any point in the plane, the point being at a distance L from the origin. Taking the dot
product of the point position vector (xp, yp, zp) With the plane normal (/, m, n) must give p =L cos 6,
where 0 is the angle between the position vector and the plane normal. Therefore, from the three points
of the triangle there are three equations, and there is also the direction-cosine interrelationship:

Ixy+my,+nzy =p
Ixy + myy + nz, =
g P (15.19.1)
Ix3+mys +nzz = p
P+m’+n*=1
These are four equations for four unknowns, but the last equation is non-linear.
Practical solution can proceed as follows. Take the vector cross product

N=(P,=P) x (P;—P),

to give the standard normal to the plane. In local coordinates on point P; this is given by:

PGk
N=|u v w
us vy ws

SO

N = ;'(V2W3 — V3W2) +}(M3Wz - M2W3) + lAc(uzv_; - M3V2)

Normalise this vector by its length to give a unit vector N/len(N), which has the direction cosines
(I, m, n) of the plane. Then use one equation from (15.19.1) to obtain p, completing the solution.
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Comments: There are no particular problems, provided that the triangle is well defined (points separated
and not in line).

15.20 Routine PointFP

Purpose: ‘Point at Foot of Perpendicular’ — to obtain the coordinates of the foot of a perpendicular from a
specified point P onto a normal-form plane.

Inputs: The plane normal-form parameters (/, m, n, p) and the point P coordinates

Outputs: The coordinates of the foot point F of the perpendicular, and the length of the perpendicular

Notes: The direction cosines have the property /> + m*+ n>=1.

Solution: The perpendicular must have direction cosines (/, m, n). The length of the perpendicular is s from
P in the direction (/, m, n). This point has the coordinates

X=xp+Is
y =yp +ms (15.20A1)
z =zp+ns

The equation of the plane is
Ix+my+nz=p

By substitution,

(xp+ Is)[+ (yp +ms)m+ (zp + ns)n =p
Collecting terms,

(xpl + ypm + zpn) + s(I> + m* + 1) =p
giving

s =p—(xpl + ypm + zpn) (15.20.2)

Substituting this value of s into equations (15.20.1) gives the coordinates of the foot F of the

perpendicular.

Comments: The solution is robust, with no particular problems. However, the direction of the normal is not
standardised (see the next routine).

15.21 Routine PointFPPI3P

Purpose: ‘Point at Foot of Perpendicular into a Plane of 3 Points’ — to obtain the coordinates of the foot of a
perpendicular from a specified point P onto a plane defined by three points. In practical suspension
analysis, this is the usual form of definition of a plane, and this has the advantage of giving a
standardised direction of the plane normal, essential for use in routines such as PointAT.

Inputs: Coordinates of the three points Py, P, and P53 defining the plane, and of the point P

Outputs: The coordinates of the foot point F of the perpendicular, and the displacement along the standard
direction of perpendicular to give P from foot F

Notes: The direction cosines have the property /> + m>+ n>=1.

Solution: The perpendicular has direction cosines (/, m, n). The length of the perpendicular is s, possibly
negative, from F to P in the direction (/, m, n). The direction of the normal is standardised in the positive
direction of the cross product

N = (Pz—Pl) X (Pg—P|)
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It is convenient to use local coordinates (u, v, w) based on P, for example,
Up =Xp—=X15 V2=Y2—=Y1;5; W2a=22—2]
The direction numbers of the normal are
Lp = vyw3 — v3wy
Mp = Wouz — wslr
Np = UpV3 — U3V
Dividing by the Euclidean length of this normal gives the direction cosines (/, m, n) of the plane normal.
For a displacement s from foot F to P in the positive normal direction, the position of F is given by
up = up — Is
VE = vp —ms (15.21.1)
WE = Wp — NS

The equation of the plane, which in local coordinates goes through the origin, is

Ix+my+nz=P
u+mv+nw=0

By substitution,
I(up — Is) + m(vp —ms) + n(wp —ns) =0
giving
s = lup + mvp + nwp (15.21.2)

Substituting this value of sinto equations (15.21.1) gives the coordinates of the foot F of the perpendicular.

Comments: The solution is robust, with no particular problems. The direction of the normal is
standardised, which is very useful.

15.22 Routine PointATinit

Purpose: ‘Point “Above” a Triangle initialisation’ — to obtain factors for use by routine PointAT to
determine the position of a point relative to a triangle, the point being in any relative location (above,
below or in the plane of the triangle). The triangle may subsequently move in any way, taking the point
with it, but the triangle must retain its shape.

Inputs: The coordinates of the defining points of the triangle in a known position, and the coordinates of the
point to be analysed

Outputs: Factors f> and f; (for the foot of the perpendicular; see Figure 15.22.1), and the directed out-of
plane distance s

Notes: A vectorised version of this routine solving many points is useful.

Solution: Drop the perpendicular from P into the plane of the triangle, using routine PointFPT, giving the foot
point F and the signed out-of plane distance s. Depending on how routine PointFPT is written, the sign of s
may need to be changed here. The foot F may then be analysed by routine PointITinit to give > and f5.

Taking the cross product of P, — P; and P3 — P, in that order gives a vector perpendicular to the plane
of the triangle. This is the positive direction for the out-of-plane displacement s.

Comments: There is one new problem beyond the use of PointFPT and PointATinit, which is the sign of s,
which should be positive in the direction of the defined normal. This also requires that the normal
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Figure 15.22.1 Factors f, and f3, and out-of-plane displacement s for PointATinit and PointAT.

vector be calculated in the same way in PointATinit and PointAT, and that the triangle defining points
are presented to these routines in the same order.

15.23 Routine PointAT

Purpose: ‘Point “Above” a Triangle’ — to obtain the position of a point ‘above’ (i.e. relative to) a triangle
(above, below or exactly in the plane), using the factors obtained in an initial position by PointATinit

Inputs: The triangle point coordinates and the factors from PointATinit analysing the initial position

Outputs: The coordinates of P

Notes: This problem/routine is also sometimes known as ‘Pole-on-a triangle’, ‘Rod-on-a-triangle’ or,
consequently, just ‘Perch’. A vectorised version of this routine solving many points is useful.

Solution: Use the provided factors f, and f3, Figure 15.22.1, to obtain a point in the plane of the triangle,
using routine PointIT. This is the foot F of the perpendicular from the point, so calculate the normal to
the plane by

N= (PQ*PI) X (Px*Pl)

Move from F along this normal by a distance s (possibly negative), reaching P.

Comments: The order of vectors in the calculation of N must be the same as in PointATinit, or the out-of-
plane displacement will be reversed. There are no particular problems provided that the defining
triangle is good (points not in line). The points must be presented to PointATinit and PointAT in the
same order.

15.24 Routine Points3S

Purpose: To obtain the two points at the intersection of three spheres
Inputs: For each of three spheres, the coordinates of the centre and the radius
Outputs: The integer number of distinct real solutions, and the coordinates of the solution points

Notes: This is also known as the ‘“Tripod’ problem or routine. If intersection does occur, the two solution
points are symmetrical about the plane of the centres. That is, the line from one solution to the other is
normal to that plane, and the mid-point of the line is a point in the plane, that is, the solutions are
equidistant from the plane. Various solution methods are possible, only one of which is given here.

Solution: The equation of a sphere has the basic form

(x=x1)"+ -+ (z—=2) =R}
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The equations for the three spheres may be expanded to

X2+ y? 4+ 22— 2xx — 21y — 2212 = R%— (xf +y% —0—2%)
X2 Y24 22— 2x0x — 290y — 2292 = RE — (X3, + 35 + 23) (15.24.1)
X2+ Y24 22— 2x3x — 293y — 2232 = RE — (33 + y3 + 23)

These are three independent non-linear simultaneous equations for the intersection point (x, y, z).
Subtracting any two of these equations removes the unknown non-linear terms, giving a linear
equation. If this is done in three pairs, the result is three linear equations. Unfortunately, such an
approach fails, because the three resulting equations are no longer independent.

The physical interpretation of this is instructive. Subtracting the equations of a pair of spheres
gives the equation of their radical plane. If the spheres intersect then the circle of intersection lies in
the radical plane. In the context of three spheres, any pair of the three radical planes intersectin a line
perpendicular to the plane of the centres. This line passes through the sphere intersection solution
points sought, and so all three pairs of radical planes have the same intersecting line, and so are not
independent. This applies geometrically and algebraically. In a numerical context, the radical planes
may be very slightly skewed due to numerical imprecision, in which case their intersection is a single
point. However, this is not a useful point because although it is on the desired line of the solutions it is
positioned along the line in an effectively unpredictable way, depending on the minutiae of the
numerical calculation. A different solution strategy must therefore be sought.

One good method of solution is to obtain only two radical planes, say for S;—S, and S;-S3, and to
intersect these for a line through the solution points. Then intersect this line with any of the sphere
equations, say Si, to obtain the two points.

Using local coordinates based on the centre of sphere 1, (u=x — X, etc), the three sphere
equations become:

W+ V4w =R = (15.24.2)
W+ W = 2upu—2vy —2waw = RE — (i3 + Vi + wl) =3 (15.24.3)
WPV W = 2u3u— 203y — 2waw = R% — (u% + V% + w%) =c3 (15.24.4)

The radical planes S; — S, and S; — S3, by subtraction, are

st + 2y + waw =1 (c1 —¢2) = ¢4 (15.24.5)

u3u+V3V+W3W:%(Cl —3) = cs (15.24.6)

These two equations may be used to eliminate two variables. Say eliminate w first, using w3(15.23.5) —
w,(15.23.6) to give

u(wsuy — wouz) + v(w3vy — wavs) = wicq — Wacs
Now write

a; = Wil — Woldz
day = W3va — W23
a3 = W3Cq4 — W)Cs
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Then using

as —daj
ag = —; a

Ta T
the relationship between v and u can be simply expressed as

v=as+ asu (15.24.7)
where the constants are known. Now using equation (15.23.5),

upu + va(ag + asu) + wow = ¢4

u(uy + asvy) +waw = a4 — asvy
This gives a simple linear equation for w(u) with known coefficients:
w=by+ bu (15.24.8)

Equations (15.24.7) and (15.24.8) can be substituted into (15.24.2) to give a quadratic equation in u
only, so the problem is effectively solved, producing potentially two values for u, with corresponding
values for v and w then solved by the subsequent equations. If the quadratic equation produces no
real solutions, then the spheres do not have the required intersection (possibly two of them do meet).
If the quadratic equation produces one real solution (i.e. coincident real solutions of the same value),
then the intersections are coincident. This would occur, for example, when two spheres just touch at
a single point, and the third sphere intersects the first two, passing exactly through the touching
point, or, seen in another way, two spheres intersect in a circle with the third sphere just touching the
circle. In the case of suspension analysis, the expected result would be two separate real solutions,
indicating the expected two possible physical intersections. Given the two u solution values, u, and
ug, then equations (15.19.7) and (15.19.8) give the other coordinates, providing the complete
solutions (#a, va, wa) and (ug, Vg, Wg).

Comments: One of these two solutions will be the desired one. The other corresponds to a geometrically
correct but physically inappropriate assembly of the components. The correct solution must subse-
quently be selected carefully if problems are to be avoided, but this is not the province of routine
Points3S, which lacks the necessary extra information to select the desired solution from the two
candidate points.

As with some other routines, it will be noticed here that there are several possible solution paths, with
possible data sensitivities according to the alignments, even for a basically well-conditioned problem. The
crucial point is the order of elimination of the variables, which should be based on the avoidance of
divisors of small magnitude (i.e. select the solution route with the largest magnitude divisors).

15.25 Routine Points2SHP

Purpose: ‘Points at the intersection of 2 Spheres and a Horizontal Plane’

Inputs: Coordinates of the centres of the two spheres and corresponding radii, and the z value of the
horizontal plane zyp

Outputs: The integer number of real solutions found and the solution point coordinates

Notes: The solution of an independent suspension conveniently begins with a position of the lower outer
ball joint. This could be done by specifying the rotation of the lower arm, but is easily done by

specifying the height of the ball joint, which is approximately related to the suspension bump value,
then solving for the x and y coordinates according to the arm geometry.
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Solution: The equations to be satisfied are two spheres and a horizontal plane:

(x=x)’+ -y +E-n) =R’ (15.25.1)
(r—x)+ =y +(z—2) =R (15.25.2)
Z = Zypp (15253)

In local coordinates, u = x — x, etc., and substituting z = zyp,
W+ +w? = R%
V4w = 2upu — 2vav — 2w w = R3 — (13 4 v3 4+ w3)
W = WHp = ZHP — Z]

There are potentially two circles of intersection of the spheres with the plane, with equations given by
substituting for w:

w4V =R%7W]2_IP=L’1
W+ = 2upu — 2vyv = R% - (u% + v% + w%) — wlz_lp + 2wowpp = ¢
Subtraction of these two circle equations gives the equation of the radical line:
2upu~+2vmv=c — ¢
Choosing to eliminate u first,
Uy 1 —C

V= ——u-+
1%) 2V2

(15.25.4)

where division by v, is required. If the absolute value of u, exceeds that of v,, it is better to eliminate u
first, with
V2 -0

u—= ——
Uy 2u2

(15.25.5)

Substituting one of these two options into (15.24.1) or (15.24.2) gives a quadratic equation in one
variable. The other then follows from (15.24.4) or (15.24.5).

Comments: The physical interpretation of this is that substituting the constant plane height into the sphere
equations gives the equations of two circles in the plane (prospectively). The intersection of the two
circles is a simpler two-dimensional problem, easily solved. Equations (15.20.4) and (15.20.5) are
alternative equations for the radical line of the two circles. If this line is exactly or nearly parallel with
the v axis (y axis) then solve for v first because v(u) is badly conditioned. In this case, eliminate u, with
(15.20.5), solving for v, because abs(uy) > abs(v,).

15.26 Routine Point3P1
Purpose: ‘Point in 3 Planes’ —to obtain the intersection point of three planes, each plane being specified by
any one point in the plane and the direction cosines of the normal to the plane.

Inputs: For each plane, the coordinates of one point in it, and the direction cosines of its normal, for
example (xy,y1,21) and (/;, my, ny)
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Outputs: The coordinates of the one intersection point (xp, yp, Zp)

Notes: This routine is required for three-dimensional velocity diagram analysis of the Points3S (“Tripod’)
problem.

Solution: The solution point must lie in each plane, so satisfying simultaneously, by dot products,
Lixp+ myyp + mzp = [ x1 + miyr + mz; = ¢
hxp + nayp + mazp = hxy + myys + mz = ¢
Lxp + msyp + n3zp = Lxy + mays + m3z3 = 3
These are three simultaneous linear equations in xp, yp and zp, conveniently solved by use of a general

simultaneous equation solver (e.g. Routine SimEqns).

Comments: In the case of a suspension, the practical problem would always be well conditioned, but data
sensitivities could easily arise due to critical alignments of the planes with the axes. A Gaussian
elimination solver with pivoting will correctly negotiate such problems, and produce a good solution.
Alternatively, use an ad hoc solver by the usual methods, with the order of elimination of the variables
chosen to avoid small divisors.

15.27 Routine ‘PointLP’

Purpose: ‘Point of a Line and a Plane’ — to obtain the coordinates of the point of intersection of a general
parametric-form line and a normal-form plane

Inputs: The parametric variables of the line, and the normal form variables of the plane

Outputs: The coordinates of the intersection point

Notes: None

Solution: At the line parametric point S, the line coordinates are

X =XxL+ s
y =yL+ms (15.27.1)

z =z +nLs
The equation of the plane is
lpx + mpy + npz = pp
By substitution,
Ip(xL + lLs) +mp(yr + mys) +np(zL + nus) = pp

Collecting terms and making s the subject,

_pr— (xLlp +yLmp + zLnp)
lplL -+ mpmy, + npng,

(15.27.2)

The divisor will be recognised as the dot product of the plane normal and the line direction.
Substituting the resulting value of s into equations (15.26.1) gives the desired coordinates.

Comments: The solution is not completely robust. The dot product could cause a division by zero.
Physically, if the dot product is zero then the plane normal and the line are perpendicular, in which case
the line and plane will not meet, that is, will meet at infinity. If the defining point of the line is in the
plane, the value of s is zero, which is not problematic. If the point is in the plane and the dot product is
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zero then the numerical solution for s is 0/0, but 0 would usually be an acceptable value. Therefore
evaluate the numerator first. If this is not zero, evaluate the denominator. If this is zero, return an
indicator of this situation. One way to handle such infinities is homogeneous coordinates.

15.28 Routine Point3SV

Purpose: To obtain the velocity of a point positioned by three rods (the position of which is found by
Points3S)

Inputs: The coordinates of the three locating points, the coordinates of the apex point, and the velocity
components of the three base points
Outputs: The velocity components of the apex point (up, vp, Wp)
Notes: None
Solution: In the 3D velocity diagram, each base point has a given velocity point. Relative to the base point,
the other-end velocity is tangential only. Relative to the base velocity point, then, the solution point
must be in a plane with a normal given by the rod axis direction cosines. The solution velocity is the
therefore the intersection in the velocity diagram of the three such planes, one for each rod.
The firstrod has base coordinates (xy, yy, z;). The apex position is (xp, yp, zp). From these, the first rod
direction cosines are easily determined. Similarly for the others.
For each rod, the base point velocity, for example (u,v,w), and the corresponding direction cosines,
for example (/;,m,,n;), give a plane in the three-dimensional velocity diagram with an equation such as

hu+my +mw = Lhu + mvy +mw; = ¢

This gives three simultaneous linear equations in the velocities (u, v, w). The intersection of the three
planes can be solved by the use of routine Point3Pl.

Comments: Routine Point3P1 will obtain the intersection point, called with the correct arguments.
Although velocities are being solved for, this requires a geometric construction in ‘velocity space’, that
is, in the three-dimensional velocity diagram.

15.29 Routine PointITV
Purpose: ‘Velocity of a Point In a Triangle’ — to obtain the velocity of a point in the plane of a triangle,
given the triangle corner velocity components and the point position factors f, and f3

Inputs: The corner velocity components for the triangle, for example (u;, v;, wy), and the point position
factors f, and f; (found by PointITinit)

Outputs: The point velocity components

Notes: The triangle must retain its shape and order of defining points, but may move in any way. The
velocities of the corners of the triangle must be compatible, with the side lengths remaining constant.
The variables (u, v, w) here are velocities, not local positions.

Solution: By differentiation to give velocities from positions, it is evident that the velocity of the point is
givenin terms of the triangle corner velocities by the same factors as is its position in terms of the corner
positions. The required factors are found by PointITinit, so

uy + fo(up —ur) + f3(us —uy)
v = v+ (v —vi)+f(vs— )
w1+ fa(wy —wi) + f3(ws —wy)

up

wp
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Comments: The solution is straightforward, other than that caution is required to provide only compatible
velocities of the three base points. The velocities of two ends of a rigid rod must have equal components
along the rod. This longitudinal velocity is the dot product of the complete velocity with the rod
direction cosines, so for two ends A and B the condition is

lup +mva +nwa = lug +mvg +nwg

15.30 Routine PointATV

Purpose: ‘Velocity of Point Above Triangle’ — to calculate the velocity of a point with a position specified
relative to a rigid triangle, above, below or exactly in the plane of the triangle

Inputs: The coordinates of the triangle corners, the factors f> and f5 and the out-of-plane displacement s of
the point P (from routine PointATinit), and the velocity components of each defining corner of the
triangle (which velocities must be compatible)

Outputs: The velocity components of the point

Notes: This routine is used for three-dimensional velocity diagram analysis for points with position
defined by PointAT.

Solution: The coordinates of Py, P, and P; are given. Also the factors f> and f5 for F and the out-of-plane
displacement s for P. The foot F of the perpendicular from P has coordinates solved by routine PointIT,
using f> and f;. The coordinates of P are solved by routine PointAT. Therefore all positions are known.

The velocity of F is calculated by routine PointITV, using the factors f, and f;.

Itremains to calculate the velocity of P relative to F. Length Lpg is constant, so the relative velocity
is purely tangential. Drop a perpendicular from P, onto line P,P3 with foot P,. The velocity Vp/g of
Prelative to Fis parallel to the plane, with the components shown, Vr; being parallel to line P, P, and
V2 being parallel to line P,P3, Figure 15.30.1. The velocity of P, can be found from the velocities
of P, and P; by linear interpolation or extrapolation according to the position factor of P, along
P,P; (P, may be outside P,P5, with f;, <0 or f;, > 1).

Calculate the unit normal to the plane for F towards P. By dot products with this unit vector, the
normal (out-of-plane) velocity components at each point, Vi, Vno, V3 and Vg, can be determined,
as seen in the figure.

The angular velocity of the triangle may be considered in three components. The first is the in-
plane rotation, about an axis perpendicular to the plane, which has no effect on Vp/g, so will not be

Figure 15.30.1 Tangential velocity components Vr; and V, for the point P relative to F, derived from the out-of plane
velocities Vi etc. at each corner.



Computational Geometry in Three Dimensions 323

considered further. The right-hand angular velocity about any axis parallel to the line P,P3 is

Vi — W
0, = ™ N4
Ly
The first tangential velocity component is then
L
Vo =1 Lep = (Va1 — VN4)LLP
14

Now, to obtain the second tangential component, the angular velocity about an axis parallel to P4P; is

_ VN2 — VN3

0,
Ly

giving

L
Vi = QoLlpp = (Vo — Va3) il
Ly

The velocity of P now follows by the addition of the two tangential components to Vg.

Comments: The solution is basically robust, with divisions by lengths that must be non-zero in practical
cases. The solution is not symmetrical in the use of the three points of the triangle, and the in-plane
perpendicular could equally well be dropped from one of the other corners. The end result for Vp should
be the same.

The solution is straightforward in concept, but more detailed than other routines here, and care is
needed to ensure a correct implementation. In practice, the accuracy is very good. A point to be careful
about is that the corner input velocities must be compatible (the base triangle is rigid).

When the point P is safely out-of-plane, routine Point3SV could be used. However, this is
unsatisfactory for in-plane points, and is really intended for configurations in which the point position
is solved by Points3S. When the triangle is rigid, routine PointATV here is the appropriate solution
method.

15.31 Rotations

The rotational position of a solid body can be represented and solved by the use of points on the body with
vector analysis, and this is generally considered to be the practical method, using routines such as those
described above. It is particularly suitable for mechanism analysis, such as that for suspensions, which
tends naturally to deal with specific points on each member. An interesting alternative is the use of
quaternions. These are particularly suitable for use on isolated solid bodies, such as aircraft or spacecraft,
but could possibly be used with advantage for some three-dimensional mechanism or suspension analyses.
Appendix D gives an explanation of the properties of quaternions and their use.

1






16

Programming Considerations

16.1 Introduction

This chapter deals with some particular issues in programming that bear upon the solution of suspension
geometry. Some of these issues are fairly specific to suspensions (e.g. the ‘assembly’ problem of selecting
one of two or more prospective solutions for a point), while others are more general (e.g. generally good
programming practice). Three-dimensional geometrical programs are of sufficient complexity that the
best programming practices are really needed to achieve reliable success.

16.2 The RASER Value

The RASER value for software is a reliability, accuracy, speed and ease of use rating. The reliability of a
subroutine is primarily its ability to survive without crashing in any data environment, and depends on its
failure modes analysis. Accuracy can be divided into accuracy for ‘normal’ cases and accuracy for difficult
cases. Speed again can be divided into speed on normal cases and speed for difficult cases. Ease of use of a
subroutine basically depends on its argument list.

The idea behind a RASER value is to draw attention to the quality of a piece of software. Just being
conscious of the concept will concentrate a programmer’s mind, the idea that his program might actually
be quantitatively scored even more so. Such a scoring system works basically as follows. Program quality
isonascale fromOto 1. A notionally perfect program scores 1.000000, but in practice no program is above
some improvement. The maximum total score available is in fact 0.999999.

The first 9 is for reliability and ease of use. Reliability means not crashing, whatever the data values.
With bad (‘impossible’) data, the correct error state IE values must be returned (Section 16.3). Ease
of use depends on a suitable routine name, and a considered arrangement of the argument list
(Section 16.9).

The second 9 is for accuracy on typical cases (i.e. the easy ones). The third 9 is for speed on such
cases.

The fourth 9 is for accuracy on the occasional particularly difficult cases. The fifth 9 is for speed on
such cases. Difficult cases include problems with bad conditioning and ones with data sensitivity
problems.

The sixth 9 is for code compactness. Actually, this was once very important, in the early days of small
computer memories, but is not so important nowadays for numerical software, which tends to be small
anyway. However, there is much obese software around, so a low score is a possibility here.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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Evidently, a score of 0.911111 beats a score of 0.899999. Reliability is more important than any other
aspect.
These topics are dealt with in more detail in subsequent sections.

16.3 Failure Modes Analysis

Failure modes analysis was developed to improve the overall performance and reliability of large
commercial and military systems, these being sufficiently unpredictable due to complexity or adverse
influence that complete reliability could not be assured. Then, instead of simply accepting occasional
failure and its consequences, the idea of design for operation under conditions of partial failure was
introduced. This was by no means new, in fact, as engineering design had included it in one form or another
for many years, including, for example, plastic failure design techniques.

The basic idea behind failure modes analysis is to accept that failure might or will sometimes occur, and
to anticipate the likely forms of such failure and to be prepared for them, that is, to be aware of the
prospective failure modes and to ameliorate the damage. This concept is readily applicable to computer
software design, with fruitful results.

Program or subroutine outcomes may be classified as follows:

(1) a program ‘crash’;

(2) solution claimed good, is good;

(3) solution claimed good, is bad;

(4) solution failure stated, but actually good solution possible;
(5) solution failed, failure admitted.

To some extent this depends on the problem. A very difficult problem may require an inordinate amount of
time, in which case it may be appropriate to abandon the attempt. It is widely accepted that the worst
outcome is (3), a claimed good solution that is actually bad. Result (4), failing to find an achievable
solution, is not ideal, but may be acceptable. The program may work well on normal problems, but it may
not work on some particularly difficult cases. If the difficult case are rare, the program may still be useful.
And, of course, it may simply not be known how to solve the difficult cases. The program may also fail by
doing the computations but losing accuracy in some way. These issues are dealt with in subsequent
sections.

Itis usual for a numerical program to include at the end of its argument list an integer variable IE or lerr,
which is used to indicate its ‘failure status’, or, in modern sales parlance, its ‘success status’. IE=0
indicates no undue problems and a claimed good result, with other values giving an indication of less
satisfactory outcomes. Typically a routine will have an output code along these lines:

IE = 0 Good result.

IE =1 Data outside acceptable range.

IE = 2 There is no solution.

IE = 3 Accuracy lost.

IE = 4 SQRT unexpected negative argument.
IE =5 ASIN or ACOS argument out of range.
IE = 6 LOG argument out of range.

IE =7 Division by zero.
IE = 8 Failed to converge in iteration.
IE =9 Points must not be in line.

IE =10 Problem in lower subroutine call.
IE=11. ..
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16.4 Reliability

Reliability in a broad sense is the ability of a program to exit gracefully whilst not making unreasonable
claims about its results. In a narrower sense, as dealt with in this section, reliability is the ability of
aprogram to keep working, not crashing, regardless of the data presented to it. This means anticipating any
problems and dealing with them in advance, rather than being a passive subject of difficulties. The main
problems in this regard are IE items 47 in the list of the previous section.

In a simple program, IE items 4-6 will cause a program termination — a ‘crash’. In many languages,
so will item 7. In Fortran, item 7 gives a result of infinity, which is a mixed blessing, at best. If the
program terminates, then data may be lost, for example several minutes of typing in suspension
coordinates, which is invariably undesirable. This problem is easily solved. Whenever one of these, or
any other ‘risky’ routine, is to be used, first test the argument for acceptability. To a neophyte
programmer, this may seem a nuisance, but experienced programmers know that in the end taking the
trouble to do this saves a good deal of time and frustration. The number of occasions on which it is
needed is not very great.

For example, the code fragment, all in real numbers

x=sqgrt (a**3-d**3+f-q)

is risky, for two reasons. Even if the data supplied are good, it is hard to anticipate the outcome of the
calculation of the argument value. Of course, there may be additional information available to the
programmer to indicate that this value ‘cannot’ be negative. However, the arguments supplied may be
outside the allowed range. If these have not been checked at the outset, the argument may be negative in
defiance of the ‘known-to-be-positive’ value. The solution is simple:

xXsg = a**3-d**3+f-g
If (xsg<0) Goto 14
x = sqrt (xsq)
where label 14 is in an error block at the end of the routine, such as

14 Pause "Negative Sgrt argument.’ ; Stop

The failure is anticipated, and dealt with in a civilised manner, according to the programmers wishes.
Similarly,

If (a<l .or. a>1) Goto 15
x =asin(a)

If (b<0) Goto 16

x =10gl0 (b)
If (c==0) Goto 17
x=(p+q) /c

! Error block:

14 IE=4 ; Return
15 IE=5; Return
16 IE=6 ; Return
17 IE=7 ; Return
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16.5 Bad Conditioning

If equations are badly conditioned then they cannot be solved accurately by any method. Typically this
arises with simultaneous equations where, say, there are two equations each representing one line. If
the lines are at a very small angle to each other then the accuracy of the solved point is poor in the
direction along the lines. This is a distinct problem from general ‘data sensitivity’, which can occur
even if the problem is basically well conditioned. In short, if the problem is badly conditioned then
there is no way to ensure accurate results, compared with a well-conditioned case. If the problem is
well conditioned, then accurate results are possible, but not necessarily by one particular method of
solution. The quality of the solution will depend on the method used, which must be selected correctly
according to the particular data.
Consider the problem of two linear simultaneous equations in variables (u, v):

hu+myv =p (16.5.1)

le—f—leV =D2 (1652)

Physically, this arises, for example, in the two-dimensional solution of the velocity of the joint of two rods
of known length and position and specified base velocities. These equations are badly conditioned if they
are almost the same equation, that is, if the coefficients are in almost exactly the same ratios. Just
multiplying one equation by a constant does not change the conditioning. If /; =/, and m; = m, and p, is
similar in value to p,, this would be parallel lines at a close spacing, actually not meeting. Now if, say, /, is
changed slightly, the lines will meet at a very small angle. This is bad conditioning. The constants may all
be different, but nearly the same, and it is still bad conditioning. Consider the case when the lines are
roughly parallel with the x axis, and meet at a small angle. A small change in the constant p for one
equation will make a large difference in the x value of the solution. More precise calculations will not
necessarily help —if the actual physical data are of limited accuracy then the true value of x will actually be
known only within wide limits.

To solve the equations, we can eliminate one variable, say u, by using /,(16.5.1) — /;(16.5.2) to give

u(hli — i) +v(hmy — Lmy) = hpy —lips

giving the solution as

_ bpr—lip

= 16.5.3
lzml — l] ny ( )
or solve for u by the same method as for v, using elimination of v by m,(1) — m(2) to give
nmyp; —npp
=— 16.5.4
12m1 — lll’}’lz ( )

In either (16.5.3) or (16.5.4) it is apparent that if the matching coefficients are similar in value then the
numerator and denominator will be small, and both will be subject to inaccuracy due to subtractive
cancellation. The problem is badly conditioned, and there is little that can be done to help, short of using
quadratic precision numbers, and although that would reduce the problem of the numerical errors, the
problem of the large effect of small changes in the data would remain. Fortunately, in practical suspension
analysis the geometrical problem must be basically well conditioned or the suspension itself will be
ineffective as a structure, with hopelessly bad location, say due to bad triangulation.
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16.6 Data Sensitivity

Consider again the problem of two linear simultaneous equations in variables (u,v):

Lu+myv = p (16.6.1)
lzll-i-ﬂ’lzv =pD2 (1662)
Solving for v first gave
hpr —hip»
== 16.6.3
Y lzml — lln’lz ( )

There are now three ways to solve for the other variable, u. We can substitute for the known v value into
equation (16.6.1) or (16.6.2), giving

_pir—my

u ll

(16.6.4)

or

P2 —nnpy
u—=—————-

(16.6.5)
b

or solve for u by the same method as for v, using elimination of v by m1,(16.6.1) — 11,(16.6.2) to give

_ mps —npp

= Loy — I (16.6.6)
The divisor in equations (16.6.3) and (16.6.6) is
d= 12}’)’11 — l|H’l2 (1667)

Consider now a well-conditioned case. Then the divisor d is then not unreasonably small, and
equation (16.6.3) will evaluate v accurately. However, it may be that, say, the direction cosine /; is
small, in which case equation (16.6.4) will be near to 0/0, and inaccurate. In fact, /; may actually be zero,
and equation (16.6.4) may be incapable of solving the problem at all, even though the problem is well
conditioned. This is a data sensitivity. It could arise physically simply because one of the rods is parallel to
an axis; for example, in this case rod 1 parallel to the v axis, giving m; =1 and /; =0. The difficulty is
purely due to the method of solution attempted, it is not fundamental to the problem. Using instead
equation (16.6.5) may give a good solution, or, for other data values, may instead be a problem.
Equation (16.6.6) depends on the value of d rather than on the individual alignments, so depends only on
the conditioning. To avoid unnecessary problems, in this case it is probably best to evaluate d once and to
use equations (16.6.3) and (16.6.6).

If problems arise in a basically well-conditioned problem, it is due to the use of a coordinate system that
aligns in a troublesome way with the physical configuration. In the above problem, using equa-
tions (16.6.3) and (16.6.6) as the method is equivalent to using rotated coordinates so that the quality
of the solution depends only on the conditioning; that is, a well-conditioned problem cannot then have any
‘bad alignments’.

A related general rule of alternative evaluations is to use the one with the largest divisor, thereby
minimising the risk of attempting 0/0 or something close to it.
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In a problem of two linear simultaneous equations, the basic physical analogue is the intersection of two
lines in a plane. For three linear equations, it is the intersection of three planes in a three-dimensional
space. Similar problems to the above may arise in such cases, and may be dealt with in similar ways,
basically by avoiding small divisors as far as possible, choosing a solution route with the largest ones. The
solution route may therefore have to be determined according to the particular data values.

Another good example of data sensitivity is the problem of deducing the interpolation factor f for a
point P known to lie on a line P,P,, with all coordinates known. The value of fis given by

Xp—X1 _Yp—)Y1 _Zp—21
X2 —=X1  Y2—=Y1 Z2—Z1

f=

(16.6.9)

Any one of these may give the required result, in general, but any one of them could easily fail because the
line P, P, happens to be parallel to one of the axes, causing a division by zero. There are two good solutions.
As usual, one method is to avoid a small divisor, so, assuming here actual separation of the points P,
and P,,

If (abs(x2-x1) > abs(y2-yl) .and. abs(x2-x1) > abs(z2-z1)) then
f = (xp-x1)/(x2-x1)

elseif (abs(y2-yl) > abs(z2-z1)) then
f= (yp-yl)/(y2-yl)

else
f= (zp-zl1)/(z2-2z1)

endif

will select the best equation to use, giving reliability and the best accuracy. Admittedly, however, it is
rather bulky. Another possibility is to use

f =LenlP/Lenl2

which is coordinate independent. This will work unless L, is zero, but that case is not useful
anyway. Whether this is a better option really depends on whether the relevant lengths are already
known or not.

16.7 Accuracy

A ‘blunder’ in a calculation is when there is a wrong operation performed or a wrong number used. A
blunder would be, for example, a program error such as a plus sign where there should be a minus sign, or
the wrong variable name used, or an incorrect solution chosen, as in Section 16.10. When there is a
blunder, the answer is completely wrong, becoming meaningless. In contrast, mathematically or
statistically speaking, an ‘error’ in a calculation is a small inaccuracy due to limited precision of the
numbers, or the accumulation of small errors by successive numerical processes.

Setting aside gross inaccuracies due to blunders, which are up to the programmer to eliminate by care
and testing, the accuracy of the computational results depends on the inherent precision of the variable
representation used and on the skill of the programmer in avoiding inaccuracy-introducing processes.

In the early days, the representation of real numbers was far from standardised. Many early computer
languages represented the real numbers by a 4-byte word, that is, 4 x 8 = 32 bit representation. This is a
scientific representation with several of the binary bits used for the exponent value, the remainder for the
‘mantissa’ or ‘characteristic’, the actual sequence of digits. In decimal terms, a 4-byte number has a
precision of about 7 decimal digits. Some specialised scientific computers used a 60-bit representation
with greater precision.
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Fortran introduced a ‘double precision’ real variable usually of 64 bits. This was not completely
standardised at the time because of the interests of the various hardware manufacturers. However, this is
now commonly available in Fortran and C and other languages.

The Basic language varies considerably from one implementation to another. Many Basics have had
4-byte real numbers, some have had 5-byte reals, and more recently some have had 8-byte real numbers.
Basic also introduced the ‘numeric’ data type of 8 bytes storage (64 bits), which is used for both integers
and reals. One bit is used to indicate whether the number being represented is a real or an integer, so the
precision of the reals is reduced by one bit compared with a true 64-bit real representation. This is simpler
for beginning programmers, who no longer have to bother about the distinction between integer and real
numbers, but is inefficient, and most scientific programmers prefer to keep a clear distinction, particularly
because the two types of number do different jobs.

The modern IEEE real number standard gives 53-bit precision, the other bits being used for the sign and
the exponent value. The 53 bits give about 16 decimal digits of precision, so 8-byte real numbers are held to
a remarkably close figure. On a bar 1 metre long, this is 10~'®m, which may be compared with the
diameter of an atom, about 0.1 nm (10710m), or the diameter of an atomic nucleus, which is about
10" m. Such a precise representation evidently does not really have much physical meaning, and is there
for a different reason, to ensure that the ultimate result of a long calculation with accumulating
inaccuracies can still result in a useful final value. It has been said with justification that to an engineer
the precision is 3 useful decimal digits with 13 guard digits.

Quad-precision numbers use a 16-byte representation, and have about 35 decimal digits of precision.

The amount of calculation in a suspension is such that with 8-byte real numbers a final precision of about
1 part in 10'% can normally be achieved. This is far more accurate than has physical significance. If the
results are worse than this then either the problem is a particularly awkward one, due to poor conditioning,
or, more likely in practice, the problem has a data sensitivity and the program is solving it by a poor
method. Methods that work around data sensitivities by selecting the solution route with the largest
divisors produce the most accurate results, as described in Section 16.6. Because of the remarkable
precision of the 8-byte real numbers now in common use, data sensitivities often have only a limited
impact, but care in avoiding such problems is still the sensible approach.

16.8 Speed

In the early days of computing, the speed and efficiency of software were of paramount importance.
Computers were slow, and very unreliable because of the thermionic valves. Programs had to run fast to go
to completion before a valve failure. The introduction of transistors greatly improved reliability, and large-
scale integration has subsequently produced personal computers of amazing speed and memory capacity.
The analysis of one position of a suspension can now be done in microseconds, so there is no longer any
need for a program to be efficient, it will seem to run instantaneously anyway. It must be said that in a
professional context, the logical thing to do is to minimise the programmer time, not the computer time.
Another way to view this is that the programmer’s time should be spent on making the program reliable
and accurate, rather than fast.

Nevertheless, it remains true that it is very satisfying to most programmers to write an efficient (i.e. fast)
program. As long as this is not to the detriment of reliability and accuracy, there is probably no harm in this,
and if the routine is one that will be used numerous times, it may be beneficial. However, starting writing a
program with speed as the main factor is likely to lead to problems. It is best to write the program initially
for clarity, to be sure that it really does do the job correctly. Later, when it is working, it could be polished
up for speed. There are two rules of optimisation sometimes quoted:

(1) Do not optimise for speed.
(2) If you must do it, do not do it yet.
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The reason for this is that a really speed-optimised program may be unclear in operation, causing issues of
reliability and maintenance.

Most programs have ‘hot spots’ — parts where the greater part of the work is done, usually in the
innermost loops. The best way to improve the performance of an existing program is to polish up the
efficiency of the hot spots only, and leave the rest as simple and clear as possible.

Such tactical optimisation is very secondary to strategic optimisation, which is to choose an efficient
algorithm in the first place. In the case of suspension geometry, the strategic optimisation is to use true
analytic geometric solutions where possible, rather than iterative solutions, which are generally much
slower.

16.9 Ease of Use

Ease of use depends on a suitable routine name, and a considered arrangement of the argument list. There
is no absolutely correct way to do this, but long ago it was found that the sensible arrangement is to have the
incoming data first with the results later, generally to have integers before reals, but to put control variables
at the end. In individual cases, judgement is needed. For example, an integer carrying the value of the
declared size of an array might reasonably be placed just before the array name, rather than collected
together with other integers away from the array name.

16.10 The Assembly Problem

Some routines return more solutions than apply physically to the problem, a difficulty that can certainly
arise in the case of suspension geometry analysis. A good example is the routine Points3S, solving the
position at the apex of three rods of known length and known base positions (Section 15.24). This is
frequently required for suspension geometry, and there is only one valid solution for the actual suspension.
However, the routine returns two equally valid geometrical solutions. The problem is to choose the one
that is appropriate to the physical problem.

As a specific example, consider the solution of the upper ball joint, based on the upper arm pivot
points, P, and Ps, and the lower ball joint P3. The three rod lengths are known. Routine Points3S solves
the geometric problem using a quadratic equation which gives two solutions. This is geometrically
correct — there are indeed two points that satisfy the equations. One point is the desired one. The other
solution found is one that is on the opposite side of the plane of the base points, Figure 16.10.1. The
routine calling Points3S and using its results has the problem of selecting the desired solution in some
way. In this case there are several possibilities. One is to choose the solution that is nearest to the
original (static) position, by calculating two lengths. Actually, there is no need to calculate the actual
lengths, the two square root operations can be avoided by comparing the squares of the lengths.
Denoting the static positions as (xs,ys,zs) and the moved position as (x,y,z) this would be implemented
as follows:

Call Points3S(. . . ,xa,vya,za,xb,yb,zb . . .)
lenlsg=(xa-xs(6)) **2+ (ya-ys(6)) **2+ (za-zs (6)) **2
len2sg=(xb-xs(6)) **2+ (yb-ys (6)) **2+ (zb-zs (6) ) **2
If(lenlsg<len2sq) then

x(6)=xa ; y(6)=ya; z(6)=za
else

x(6)=xb ; y(6)=yb ; z(6)=zb
endif
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Pf)ﬁ

Upper arm pivot axis

Plane of P, Py, P
Pgi below plane

Figure 16.10.1 Two solutions by Points3S for the upper ball joint in the case of double-transverse arms.

This usually works satisfactorily, but consideration should be given to the possibility, in general geometry
at least, that in an extreme displacement, at very large bump, this could fail, because the wrong point
becomes closer.

Considering Figure 16.10.1 again, a good alternative could be to apply a simpler criterion based on a
single component of the position. For transverse arms, the longitudinal (x) component of position varies
little, and would probably be a troublesome choice. Because of the lateral inclination of the plane of the
base points, the lateral (y) component of the two options is larger for the desired case, but again this is
under threat in the case of a large bump displacement. However, the vertical (z) component makes a good
discriminator, and is not bump sensitive, as the upper solution in the static position remains the upper
solution throughout the motion range. This is therefore the preferred method in this case, and can be
implemented easily as follows:

Call Points3S(. . . ,xa,ya,za,xb,yb,zb . . .)
If (za>zb) then
x(6)=xa ; y(6)=ya; z(6)=za
else
x(6)=xb ; y(6)=yb; z(6)=zb
endif

This is simpler, which is usually an advantage, even easier to understand, and faster than the previous
method. However, it does require geometric insight into the problem.

A suitable method can be applied in each case, using an appropriate coordinate for the particular case, as
desired. In the case of the solution of the steering-arm end, Figure 16.10.2, the two solution options are
strongly discriminated by the x coordinate. For that case, with the x coordinate positive forwards, with a
rear steering arm, as usual, then:

Call Points3S(. . . ,xa,ya,za,xb,yb,zb . . .)
If (xa<xb) then
x(8)=xa ; y(8)=ya ; z(8)=za
else
x(8)=xb ; y(8)=yb ; z(8)=zb
endif

If the steering arm and rack are forward of the steering axis, then the selection criterion must be
reversed. Obviously, in each case the geometry must be considered carefully to select the most suitable
method.
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Figure 16.10.2 Two solutions by Points3S for the steering-arm end ball joint (track-rod outer end) in the case of
double-transverse arms.

If an incorrect choice is made (i.e. an assembly blunder), then there may be various consequences. One
possibility is a completion of the computational analysis with largely nonsensical numerical values
resulting, but the routine returning IE =0 (i.e. claiming a good solution), the worst possible outcome as
discussed earlier. Another likely outcome, bad, but probably not as bad as the last event, is that at some
subsequent stage the geometry will become impossible. There will be other links that fail to meet, not
being long enough for the unphysical problem now presented, typically manifesting itself as a call to a
square root with a negative kernel, or a quadratic equation without any real roots (i.e. no physical solution).
At this point the routine should abandon the computation and return a suitable IE value to some higher
program. However, the routine will not have any way of knowing what has really gone wrong, and the
programmer — or worse, a subsequent user — will be left wasting a good deal of time trying to sort it out.
Therefore, the ‘assembly’ issue is one that must be attended to carefully by the programmer.

16.11 Checksums

For hundreds of years, checksums have been used in scientific and financial calculations. They are highly
applicable to numerical programming. Generally, a routine is required to solve one or more equations, so
on completion the equations can be checked for satisfaction. As a simplistic example, a routine to solve the
equation

ax® +30* = ¢/x
would have a section at the end along the lines of
e=ax"3+3*b"2 -c/x
If (abs(e) > tol) Goto 15

Return

15 IE=2 ; Return
or 15 Pause ’'Accuracy lost.’ ; Stop

where tol is a tolerance, possibly 107°, depending on the particular case.

1
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Iteration

To go beyond is as wrong as to fall short. (Confucius XI-XV-3)

17.1 Introduction

The English verb ‘to iterate’ comes from the Latin verb itero, to repeat, and the noun iferatio, meaning
repetition. However, in the context of computing it has a sharply different meaning from simple repetition,
the latter being simply ‘looping’. A loop is just a series of instructions used in sequence, repeated several
times. Iteration is a special case of repetition in which a variable, the accurate value of which is sought, is
progressively refined in value from an initial estimate. Hence, in computational use:

to iterate (verb): to seek a value by successively improving approximations.
iterate (noun): the variable being refined.
iteration (noun): the process of iterating the iterate.

Iteration, then, is a method in which successive improvements are made to one or more variables, and in
which the correct solution is only approached asymptotically, the exact result being reached only after an
infinite number of loops. In practice, a finite number of cycles are used, on the basis that the latest solution
has become near enough, or is exact to within the precision of the computer number representation. Basic
explanations of iterative methods may be found in many texts, for example Shoup (1979, 1984).

Iteration is known as an indirect method (although there is a process called direct iteration), to be
contrasted with direct methods, which use a single sequence of calculations to arrive at the solution,
usually mathematically exact in principle (i.e. algebraically exact). However, iteration is sometimes more
accurate than a direct method because it can avoid cumulative numerical error. Iterative improvement
(polishing) can sometimes be applied with advantage to a solution initially obtained by a direct method.

An important advantage of iterative methods is that error is not propagated, that is, an inaccuracy at one
stage does not place a limit on the accuracy of the final result. However, there can be problems of lack of
convergence. This means that iterative processes sometimes lack reliability. Even for an iteration that is
convergent in principle, whether the iteration actually converges on the desired solution or not depends on
the initial estimate. Practical experience of iterative methods shows that great care is required to obtain
reliable results. Also, iteration tends to be a slow process, because of the repetition of the loop, usually
much slower than a direct method. However, in many cases there is no direct method. Then there is no
option — iteration must be made to work or there will be no result at all.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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In the context of vehicle suspension analysis, and related topics such as general mechanism design, the
basic analysis can often be performed either by direct geometric solution or iteration. As described in this
book, direct geometric solution requires a good understanding of the problem, more than is required by
iteration, but both methods have been used to write useful programs. There are some situations where
iterative solutions are unavoidable. Solution of the position geometry with a specified suspension bump
position for a double-transverse-arm suspension is one good example. There is no direct solution, so the
method must be iterative. Similarly for strut suspensions. Another good example is the five-link
suspension (see Figure 1.10.9). This has no direct solution at all, so all position analysis must be iterative.
This applies also to the rigid axle, with solution detailed in Chapter 13. Iteration, then, is a necessary
process in some forms of suspension analysis. One aspect of practical suspension problems is that the
iterative function is generally well behaved, which facilitates efficient solution, and directs the choice of
methods.

This chapter, then, gives an overview of iterative methods which might be used for suspension analysis,
discussing their application and relative merits.

17.2 Three Phases of Iteration

Itis useful to think of an iteration as having three phases, Figure 17.2.1. In the first phase, the function may
be analytic but rather erratic, so ambitious high-order iterative methods may have problems. In the second
phase, the function has become smooth locally and high-order methods come into their own, with fast
convergence. In the third phase, the numerical noise on the function value becomes significant, and
numerical derivatives in particular become a problem.

A mathematical algebraic variable has infinite precision. A real number in a computer does not.
The smallest increment in a numerical variable that can be added to that variable and make it different from
the initial value is limited by the numerical precision of the number representation. The size of the
minimum increment relative to the variable value x is called epsilon(xx), and in some languages is available
as an intrinsic function under that name. The minimum usable increment in x is given by

dx = x X epsilon(x)

(a) /\/\/ () /
~ -

()

l_I_LI
JJ L1

Figure 17.2.1 The three phases of iteration: (a) phase 1, wide range, with erratic analytical fluctuations; (b) phase 2,
mid-range, smooth curve, fast iteration possible; (c) phase 3, micro-scale, numerical staircase, possibly erratic or large
steps.
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For an 8-byte real number, the precision is usually 53 bits, so a change of one part in 2% is just the one last
bit, the minimum change that can be registered, about 1 part in 10'®. Hence, any attempt to determine an
iterate to better than 1 part in 23 will not succeed. Actually, the situation is slightly more complicated than
that, with the real number processor using a precision of 60 bits, having extra guard digits, the basic
representation having a notional precision of 53 bits, and an epsilon corresponding to 52 bits ensuring a
usable increment. For 4-byte real numbers the factor is usually 2°°. The useful accuracy in the iterated
function f may be much worse, because it is the result of a series of calculations, possibly rather
complicated geometrical ones, and subtractive cancellation may have reduced the meaningful accuracy to
well below epsilon(f). Attempting to iterate the independent variable to a narrower range than
corresponds to the uncertainty in f{x) also will not give meaningful results.

In the case of polynomials, it is possible to estimate the accuracy with which the polynomial value can
be calculated. However, this is not very practical for more complicated routines, although some testing and
experience will indicate realistic values.

17.3 Convergence

Convergence analysis is the study of conditions under which an iterative solution will converge to a
solution, and of methods of improving the rate of convergence and ultimate accuracy.

There are some similarities between the convergence of a numerical process and the convergence of a
mathematical series. In the evaluation of various mathematical functions, series summations are used, as
may be found in the handbooks. For example, the series for sin(x) is

sin(x) = x—éx3+$x5 - +(—1)K%xK+
This series, or one similar to it (a Chebyshev economised series), is actually used by a computer to evaluate
the sine function whenever it is used. A series is said to be convergent mathematically if its sum for an
infinite number of terms is a finite value. However, a series may be mathematically convergent but
effectively useless. For it to be useful, it must become accurate within a reasonable number of terms, so the
terms must reduce in size rapidly. This is rapid convergence.

In an iterative solution to a problem, if the successive solution values become closer to a single value,
this is convergence. However, the convergence must be usefully fast. It is often assumed that convergence
will be to the correct solution, but it may not be so in some cases — that is, where there is more than one
solution it is possible to converge on a solution, but the wrong one.

In an iterative solution, if the successive values become progressively further from the solution, this is
divergence. Such divergence may be monotonic (going one way) or oscillatory (alternating sign of error).
Exponential divergence is often recognised by the rapid appearance of very large unphysical values for
variables. A possible solution is reformulation of the problem by some sort of inversion of the equations.
Another possible corrective is to stabilise the process by taking the average of the new and old values. This
can be refined further by using a variable iteration factor to select some fraction of the change to the new
value. This is discussed in detail later.

In a successful iteration, in phase 2 of the process at least, the relative error ek at step K will in general
decrease as

P
ex 1 =Aeyg

where P is called the order of convergence and A is called the asymptotic error constant.

Linear convergence has P = 1, and requires -1 < A < 1 for convergence, and small magnitude of A for
rapid success. With A = 0.1 each iteration leaves a residual error 0.1 times that of the previous iteration.
This adds one decimal digit of accuracy at each iteration. In a binary search, A = 0.5, adding one bit of
accuracy at each iteration.
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Some processes exhibit quadratic convergence, in which P =2, and the number of accurate digits
doubles at each iteration. Then with A = 1 and an initial relative error of 0.1 the successive errors would be
0.1,0.01,107*, 107,107, etc. Obviously such a process goes much more rapidly at the end than does a
simple linear iteration. Newton’s first iteration is an example of this.

Some methods have a cubic convergence, in which the number of accurate digits triples at each
iteration. An example is the Laguerre iteration for a root of a polynomial.

The order of convergence need not be an integer. For example, the secant method has P = (1 + \/5) /2

1.618, the ‘golden ratio’.

By using the appropriate number of derivatives, methods can be derived having asymptotic conver-
gence of any required order. One method of deriving such formulae is by reversion of the Taylor series
expansion. High-order methods can also use information from the function value at several points.
However, higher-order methods involve more calculation per cycle. Higher-performance methods, then,
use more than one function evaluation per loop, or use derivatives in addition to the basic function value.
The correct comparison of the performance of alternative iterations can better be expressed as the order of
convergence per total of function and derivative evaluations. For example, an iteration with quadratic
convergence has order of convergence P =2 per loop, but if it uses two function evaluations per loop then
the order of convergence is only \/ 2 per evaluation.

Methods with a high order of convergence are faster in principle, but tend to be more critical — at higher
risk of not converging at all — and generally have a smaller catchment area, requiring a better starting
estimate. Hence, it is common in general computing practice to begin with a slow robust method and to
polish with a high-order method. Linear convergence is rather slow in principle, but if truly linear it can
easily be accelerated into quadratic convergence (Section 17.8) giving much improved performance.
There may be little to be gained by going beyond that, because of the reduced reliability.

Because suspension problems generally involve geometrically smooth functions, high-performance,
high-order iterations are attractive and practical. Also, the acceleration of linear iterations is a very useful
method in such problems.

17.4 Binary Search

The basic binary search is mentioned here for comparison, but is not likely to be needed for a suspension.
One useful feature is that it is very easily implemented, and with the speed of modern computers even this
slow but safe method can do an adequate job. One of its merits is absolute reliability.

Itis necessary to begin with a pair of iterate values that are known to bracket a zero. At each iteration, the
mid-point is investigated. The new point and the old point with opposite function value sign are retained.
Therefore, the two points at any stage bracket the zero, which is a valuable feature because the zero is then
known to a definite limit of accuracy. The estimate of the actual zero is always the mid-point of the current
range, and the maximum error is half of the range. The range and the maximum error halve at each iterative
cycle, adding one bit of accuracy. Hence, about 3 cycles are need for each additional decimal digit
(actually log,10 ~ 3.322). Starting with no accuracy, for an 8-byte number representation having 53
significant bits it would take 53 cycles with 53 function evaluations to achieve full resolution. However, in
view of the limited accuracy of the function, less may be all that can advantageously be used. Nevertheless,
the figure of 53 cycles is a useful basis for comparison.

In computing, a real number is stored as a characteristic and an exponent. The degree of precision
depends on the number of bits allocated to storing its characteristic. For example, a 4-byte (4 x 8 =32 bit)
real variable could have 3 bytes allocated to the characteristic, one being a sign bit, leaving 23 value bits,
discriminating 22 separate values, approximately 7 decimal digits (log;o 2*%). Double precision, often the
standard nowadays, typically uses 8 bytes total with a 53-bit characteristic value (and one sign bit) giving
about 16 significant decimal digits, extended precision 12 bytes with 85 bits and about 25 decimal digits,
and quadratic precision 16 bytes with 117 bits and 35 significant decimal digits. When a binary search is
used, the number of cycles required for full resolution is directly proportional to the number of bits in the
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characteristic. However, methods with quadratic convergence require a number of cycles, if all goes well,
depending only on the logarithm of the number of bits. This means that the binary search shows up quite
well in comparison when 4-byte numbers are in use, but for high precision the comparison leans towards
the more refined methods.

The main strength of the binary search is in dealing with erratic functions. Suspension geometric
functions are generally well behaved, so the binary search is not a likely choice. However, with the
speed of modern hardware even a binary search could well be fast enough to be satisfactory.
Realistically, though, most programmers would regard it as a matter of professional pride to use a
faster method.

17.5 Linear Iterations

A linear iteration is one in which successive values of the iterate have errors in constant ratio (i.e., in the
case of a successful iteration, an exponential decay of the error). In a prospectively linear iteration, and
others, success is not assured and the following problems may to occur:

(1) monotonic divergence;

(2) oscillatory divergence;

(3) monotonic convergence too slow;

(4) oscillatory convergence too slow;

(5) oscillation between two stable incorrect values;
(6) convergence to an inaccurate value;

(7) convergence to a totally wrong value;

(8) a wild leap away from a root.

The first four problems are inherently algorithmic and may be dealt with by various software improve-
ments. Cases (1) and (2), divergence, can often be cured with a fixed-point iteration by turning the
equations ‘inside out’, using an alternative formulation. In principle, divergence can be fixed by a negative
constant iteration factor, but this is not always easy to do in practice, and accelerated convergence
(Section 17.8) is a more reliable cure. Problems (3) and (4), convergence too slow, can be fixed with an
iteration factor, as sometimes may (5). Case (6) is likely to occur because of numerical imprecision in the
real number representation (e.g. due to subtractive cancellation problems). In case (7), the value may be
algebraically correct for the equations, but not the desired value (e.g. a wrong root), and may possibly be
fixed by the selection of a more suitable initial value. The final case, (8), is due to alighting on a point of
very small gradient, which in some methods results in a grossly excessive adjustment. The reason for this
is typically that the numerically found gradient is faulty because of local numerical noise when
approaching the final value.

The behaviour of standard linear iterations, without use of an extra iteration factor, can be analysed with
advantage. The error ratio is the ratio of successive errors. During an actual iteration, the true solution is
not known accurately, so the errors themselves are not known accurately either. However, the error ratio is
closely approximated by the ratio of successive changes, because in a truly linear iteration the changes are
directly proportional to the errors. The correction ratio is the iterative change in the desirable direction
(opposite to the error) divided by the error at the start of the step, and is normally positive (@ =1 — r), for
example 0.6 for a slow monotonic convergence. Parameter e in Table 17.5.1 is a fairly small number,
such as 0.1.

Applying a fixed-value multiplier to the calculated change can solve most of the problems, and give
much more rapid convergence. The ideal multiplier is

1
1—r

w =
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Table 17.5.1 Linear iterative behaviour

Case Error ratio Change/error Behaviour of standard iteration
r a=1-r
(1) + infinity —infinity Extreme divergence
2) +(1+e) —e Monotonic divergence
3) +1 0 No improvement
“é) +(1—e) e Slow monotonic convergence
5) +0.4 0.6 Monotonic convergence
6) +e (1—e) Fast monotonic convergence
(@) +0 1 Perfect iteration in 1 step
8) —e (1+e) Fast oscillatory convergence
) —-0.4 1.4 Oscillatory convergence
(10) —(1—e) 2—-e) Slow oscillatory convergence
an —1 2 2-point stable oscillation
(12) —(1+e) 2+e) Slow oscillatory divergence
13) -2 3 Oscillatory divergence
14) —infinity infinity Extreme divergence
with

1
Xg4+1 =Xk + (_)AXK
1—r

In a truly linear iteration, this would give a jump directly to the correct solution.

Real iterations are not exactly linear, so unfortunately the iteration correction factor does not really
give the immediate solution, but can still give considerable improvements. For example, a factor of
1.83 often works well in relaxation iterations. Also, the concept does lead to much improved
‘accelerated’ linear iterations (Section 17.8), using an adaptive iteration factor, with a new value
calculated for each cycle.

17.6 Iterative Exits

A loop exit condition is the logical condition under which the work of the loop is deemed to have been
completed, and control is to pass out of the loop. For example, the condition here is that the loop counter K
equals 30:

K=0
Do
K=K+1
If(K==30)exit
enddo

For an iteration, rather than a simple loop, the exit condition may be quite complicated, but will typically
look something like

If (abs(ul-uls)<tolu .and. abs(vl-vls)<tolv)exit
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It is more efficient to write

If(abs(ul-uls)>tolu .or. abs(vl-vls)>tolv)cycle
Exit

because if the first test fails, as it probably will many times, then there is no need to make the second test.
Note that when the .and. changes to .or. the direction of the comparisons must change. The following split
exit condition is much more relaxed, because it will exit if only one variable is within tolerance, which is
probably not acceptable:

If (abs(ul-uls)<tolu)exit
If (abs(vl-vls)<tolv)exit

An alternative good way is

If(abs(ul-uls)>tolu)cycle
If(abs(vl-vls)>tolv)cycle
Exit

If there are many variables with tolerances, they can be put at the end of the main loop thus:

DoKI:
Do KI=...

Do KvV=1, NV
If (abs (dx(KV))>tol) cycle DoKI
enddo
exit
enddo DoKI

where it is necessary to use a named main loop to cycle the outer loop instead of just the test loop.

Fortran 90 places its exit conditions in an exit statement, as shown, which is powerful and flexible, as
they can be placed at any point in the loop. Other languages (e.g. Basics) often have the exit conditions
only at the ends, e.g. do while (condition) or loop until (condition). Really it is preferable to have all
methods available.

In a bracketing iteration, such as a binary search, the tolerance can be applied to the errors. During a non-
bracketing iteration, such as fixed-point iteration, the true value of the iterate is not known, and neither are the
errors, so the tolerance cannot be applied to the errors. Instead, it must be applied to the changes of the iterate.
Ifthe convergenceis fast (i.e. the errorratio ris small), this will work well. If the convergence is only creeping
then the remaining error may greatly exceed the change, being 1/r times that, so the error would then greatly
exceed the escape tolerance. Creeping iterations require acceleration by fixed or adaptive factors. Ideally,
other than instant perfection, there is a small overshoot of the correction, with the corrections and errors
reducing rapidly in magnitude whilst alternating in sign, thus effectively bracketing the solution.

The basis for ending an iteration is then a comparison between successive approximations for a root.
The assumption is that the error can be made as small as desired simply by performing more iterations.
This is not always possible. Let d represent the absolute value of the difference between successive
approximations to the root:

dK = abS(XK—X](, 1 )



342 Suspension Geometry and Computation

(a)

(b) (c)

Figure 17.6.1 Three numerical staircase problems at small scale, x steps are x X epsilon(x): (a) very flat, many
possible x values for a zero, small gradients; (b) very steep, possibly no true zero at all; (c) erratic ‘noisy’ function,
possibly several disconnected zeros, possibly zero-value gradients.

The behaviour of dx may be erratic for the first few iterations, during phase 1 (see Section 17.2), but if the
process is convergent then dy will decline considerably as the iteration proceeds through phase 2. In due
course, phase 3 is entered, and in some cases it may be found that the calculated change to the iterate
cannot consistently be reduced beyond a limiting value, no matter how many iterations are carried out.
This phenomenon is generally caused by round-off errors in the computations, which give the ‘erratic
staircase’ function shape at a small scale, Figure 17.6.1. For example, subtractive cancellation can cause
wide flat areas with large steps between (i.e. a large-step staircase). Then the values for dx may oscillate
about some mean value, or perhaps suddenly leap to a much larger error, possibly infinite. No useful
purpose is served by continuing computations beyond this point. The exit test should consider this.
However, the test must allow some erratic behaviour of dy, in particular that occurring in phase 1, because
of the possibility of a poor starting value for the iterate.

There is much that can go wrong here, particularly in phase 3, depending on the type of iteration, with
numerical derivatives being particularly risky. Again, according to the type of iteration and accuracy
requirements, the solution to these problems may vary considerably. Two simple, indeed crude, but
effective methods are:

(1) Simply perform a fixed number of iterations, the number found by experience and tests to be
sufficient.

(2) Only seek sufficient accuracy. If this is much less than the ultimate numerical accuracy, which
is often the case in engineering, then an easy exit tolerance can be used, avoiding all the
problems of phase 3.

However, it is also often desired to achieve the best possible accuracy, and some more sophisticated
control of the iteration is needed. First, for safety it is common to set a large maximum number of iterative
cycles, such as 100 or 200, to catch any odd non-convergent failure cases, say entering a closed cycle.
These should then exit as a failure state (e.g. IE =8, ‘Failed to converge in iteration’).

Next, ideally the iteration should recognise that it has safely passed from phase 1 into phase 2.
Depending on the particular problem being iterated, this may be done simply by requiring a certain
minimum number of iterations, say 5, according to experience. Better is to detect a sequence of
successively reducing correction magnitudes. This state can then be used to trigger accelerated conver-
gence, if appropriate.

Finally, and most critically, the arrival at phase 3 must be detected and used to exit the iteration,
or to start a phase 3 strategy to make the best of situations such as those in Figure 17.6.1, for example
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in (a) to find the centre of the zero band. Phase 3 can be considered to start when any of the following
occur:

(1) Successive changes of the iterate are nearly down to x x epsilon(x).

(2) The function value changes are close to the limits on function accuracy, which is probably
limited by numerical processes, subtractive cancellation, etc., much larger than epsilon(f).

(3) The changes to the iterate are small enough for the numerical f{x) staircase form to be
significant.

(4) The proposed change to the iterate is of an increased magnitude from the last cycle.

Generally, a good method is that once phase 2 is entered the changes are monitored, and accepted whilst
they are sequentially smaller in magnitude. If an increase is found, then phase 3 has been reached, and if
the last change was small enough then the iteration is effectively complete. This is sometimes called
‘Garwick’s device’. Garwick suggested that a relatively modest criterion of the form abs(xx , | —xg) <e
should be used, and when this criterion has been satisfied then iteration should continue as long as the
differences between consecutive xg are diminishing. When finally we reach values for which the
magnitude of the change increases then the last improving value of z should be accepted.

For the case of polynomials, see Adams (1967). See also Jenkins and Traub (1972) and Jenkins (1975).

17.7 Fixed-Point Iteration

Fixed-point iteration can be considered in two types, called here endogenous and exogenous. In the
endogenous type, the base equation is simply rearranged into an iterative form. For a simple example,
consider Wallis’ equation (used by Wallis and Newton over 300 years ago)

y=x'-2x-5=0
As the basis of an iteration, this could be rearranged as

x=(2x+5)"
or as

x=1(x"-5)

When two arrangements are possible, it seems invariable that one form is iteratively convergent and the
other is divergent. In this case, the first form is the convergent one, having an error ratio of about 0.16 per
cycle. The other formulation is wildly divergent, or, with a gloss, converges rapidly on infinity. The
iteration to use would be

XK1 = (2)6,(—0—5)1/3

The form of function to be solved may not be known explicitly in algebraic form, but only as the result of a
calculation, as a black box value. This is the effective situation with suspension iterations, which
obviously are not amenable to an iteration of the above simple type.

Exogenous fixed-point iteration is using xx 1 = xx + Cf(xg) where f is the function to be solved
and C is a constant, the equation obviously being satisfied at f=0 when xg is a root. Here, f(x) is not
required in algebraic form, as it is not rearranged. Actually, almost any function F of f could prospectively
be used for the iteration,

Xk 41 = X + CF(f(x))
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provided that the zero value at the root x is retained. The convergence properties depend on the function
F(f) and on the value chosen for the constant, which may also usefully be varied dynamically according to
the progress of the iteration. Using the negative reciprocal of the gradient of ffor C gives Newton’s first
iteration.

Fixed-point iteration on a complex variable can work quite well, but tends to be slow to converge, and
will often oscillate between the conjugates. This may not be a problem as either one may be acceptable.

Fixed-point iterations are generally linear and may be accelerated with considerable performance gain,
as described in Section 17.8. The problem of solving for Z; g; for a given suspension bump Zgg can easily
be expressed as a fixed-point iteration.

17.8 Accelerated Convergence

The simple linear iteration, as shown in Table 17.5.1, may be considerably improved in its rate of
convergence by the introduction of a constant iteration factor, also known as an iteration speed factor, an
acceleration factor, a stabilisation factor, a relaxation factor, etc., usually represented by w. The new value
Xk 1 1 taken is then calculated from the initially iterated new value xjtgg and the old value xg:

Xg+1 = Xg + w(XITER — XK ) (17.8.1)

Put simply, a fraction w of the proposed change is actually used. Evidently, an iteration factor of O will stop
the iteration from advancing at all. A value less than 1 will slow down or stabilise the process. A factor of 1
gives simple standard iteration, whilst a value greater than 1 will accelerate and destabilise the process. For
many problems, the optimum value has been investigated in detail. Unfortunately, the optimum may be
impossible to calculate in advance.

Alternatively, an adaptive factor can be used. In adaptive iteration, a variable iteration factor, calculated
anew for each iteration cycle, is used. The basic linear convergence, even creeping, divergent or oscillatory
iterations, can by this means be converted into quadratic convergence.

If the error e in an iteration changes by a constant factor r in the successive estimates, this is a linear
convergence, with exponential decay of the error, the successive errors being in a geometric progression.
Consider an iteration with an unknown true value x, with three successive calculated non-accelerated
iterate values numbered K, K + 1 and K + 2. The process therefore requires two new function evaluations
per cycle. The three iterate values and the error ratio give:

Xx = X+ex (17.8.2)
XK1 = X+ eyt (17.8.3)
Xki+2 = X+ ek (17.8.4)

exi2 = Fegi1 (17.8.5)

Calculating r x (17.8.3) — (17.8.4) and using (17.8.5), which eliminates e, gives
FXgK41 — Xk42 =X — X
A good estimate of the true x is therefore

XK+4+2 — I'XKg41
= 17.8.6
1—r ( )
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Hence, if a value can be obtained for the ratio r, a much better estimate of the true x is available. This
method is applicable if r is fairly constant, and not too close to 1, that is, if the iteration is close to linear, in
which case the ratio of errors can be calculated approximately from previous iterations, using the ratio of
the changes:

Ay = xg 11— Xk

17.8.7
Ay = Xgy2 — XK1 ( )

Ay Xgi2 — Xk

; (17.8.8)

N A_I N XK+1 — XK
The enhanced solution will be exact if r really is constant, and good if r is changing slowly. For accuracy,
the ratio should preferably be calculated from the proposed changes, not by subtraction of the complete
iterated values, although this is not possible in the case of the typical suspension iteration for Z; gy given
Zsg. In summary,

4,

r:I

x = XK+2 7 PXKHL (17.8.9)
1—r
By substitution, the above equations can be reformulated as
r
X = Xg42 + (:)(XK+2—XK+1) (17.8.10)
or
x:xmr(x"“ = k) (k42 = Xicr1) (17.8.11)
Xgt2 — 2Xg41 + Xk
and
X 2XK N (17.8.12)

Xk12 — 2Xg 41 + Xk

These forms show that the result is algebraically equivalent to Aitken’s acceleration, and to Steffensen
iteration. It is also easily shown that

47
X:XK+A1 —A2 (17813)
A4
X = Xg+1 + A%Zz (17814)

2

2
A —A,

X:X](+2+ (17815)
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showing that the method is also the same as the delta-squared process. Actually, these final expressions
of the principle may be the best ones to use, involving the least numerical inaccuracy. Of the
above, equation (17.8.15) is the most accurate, unless, say, xx . » is expanded and the increment is
collected together and calculated as one item. The total increment on xx may correspondingly be
expressed in three ways:

A? AA A?
A+~ = A+ 4+ 2

_ L
Ak =3 — 1 A —A, A -2,

(17.8.16)
The division by a subtraction suggests some possible loss of accuracy in the increment, although this
should not be serious unless the basic iteration is creeping with successive increments of almost the same
size.

Accelerated convergence is excellent when it works, but it is not always cooperative. It requires a
smooth underlying iteration with a constant error ratio, that is, a steady linear iteration. Iterations do not
necessarily meet this criterion. In particular, when there are several variables involved in the loop, they
interfere with each other and usually cause variable error ratios, so acceleration is likely to fail in such
cases.

17.9 Higher Orders without Derivatives

It is possible to achieve much faster convergence than linear, typically quadratic per loop, by using data
from more than one point. That is, instead of using a fixed-point type iteration, the information from the
function value at several points is used simultaneously to give an improve iterate value. It is certainly
reasonable to expect this to be more efficient than a normal fixed-point iteration, in which the old results
are all discarded after a single use. In principle, all the test values of the function could be retained and
used, say by fitting a polynomial to the N points and solving for a root. This is not a method commonly used
in practice. However, it is common, and effective, to use the function value at two or three points. A higher-
order iteration may alternatively be based on one point, using the function value and one or more derivative
values at that point, as described in the next section.

The common methods based on the function values at two points are the secant iteration and regula falsi.
These model the function as a straight line between the two points to predict the new iterate value. The
usual three-point iteration is called Muller’s method, which models the function as a parabola.

A secant is a straight line making two intersections with a curve, Figure 17.9.1, notionally cutting off a
segment. The secant method is a widely used root iteration, possibly faster than Newton’s method, with the
difference that the analytic derivative is not used. Instead, two function values are used, with the function

Af /
f i

y =

Xy

True zero
K+1

X

K+1

Figure 17.9.1 The secant method.
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modelled as a straight line through these points to predict a zero. In effect then, this could be seen as similar
to Newton’s first iteration, but with a numerical derivative between the last two points, reducing the
computational work per cycle.

With independent variable values xx and xg , ;, with function values fx and fx , ;, the gradient is

Jev1 —fx
m=-———
XK+1 — XK
and the new iterate value is
i1

XK+2 = XK+1—

Each cycle then uses one new function evaluation. The oldest point is discarded. This is the same as
discarding the point with largest function value. Convergence is not quadratic, but it is super-linear, with
convergence factor 1.618, the golden ratio. Care is needed with the completion criterion. Conte and De
Boor (1972) describe a modified secant method in which lines of variable gradient are used.

Regula falsi, or ‘false position’, is a similar method of zero finding, being a modified secant method, in
that the point discarded is the one with the same function sign as the new one. The two points used at each
stage then have opposite function signs. By this means, the zero is kept bracketed, which gives certainty on
the accuracy of the zero, and the new value is always interpolated, not extrapolated. The cost of this is
somewhat slower convergence in most cases. This is a useful method if maximum accuracy is desired, as
the bracketed zero facilitates phase 3 of the iteration.

Muller’s method also uses only actual function evaluations, with no derivatives. This makes it
particularly useful for some types of function. Three points are used. There are several variations of
the method. In one method, given a root estimate x and an offset /, the function is evaluated at the three
points x — s, x and x + h. A parabola is fitted to these points, and the two roots of the parabola are found.
The one nearer to the original estimate is retained. The offset is reduced, and the process repeated, iterating
down to an accurate root value. This clearly can work for real roots. Interestingly, it also works for complex
roots.

In an alternative version, the three x values are not equally spaced. The three new values are the new one
and the last two old ones nearest to the new one. By this means, only one new function evaluation is
required per cycle, which proves to be more efficient. It is convenient to think of each new value as the
current estimate, with the last two trailing values used to improve accuracy of the next estimate.
Completion is deemed to occur when the change in the new estimate is small enough, and/or when the
function value found is small enough.

Given any three values of the iterate (x;, X», X3) and the corresponding function values (fi, f>, f3), the
fitted quadratic gives three simultaneous equations in its coefficients a, b, and ¢, for example
fi= ax% + bx1 + c. The required solution for the quadratic coefficients is then, for example,

d = (x1—x2)(x1 —x3)(x2 — X3)

_ i =A) = x3) = (h =) (1 = x2)
d

a

(i —f)(x1 = x3) — (i —f) (x] — x3)
d

b=

c=fi — (ax? +bxy)
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There are two other obvious equations as alternatives or checks for ¢. The divisor d is symmetrical in the
iterate values, and cannot be zero as long as the points are distinct. Alternatively, use

f—h
my = ———
X2 — X1
= H—h
X3 — X2
=y
B X1 — X3

b=m —a(x; +x3)
c=fi —xi1(ax1 +b)
With either set of the above equations,

2c
X =

© —b—sign(b)Vb? — dac

The sign(b) is used to maximise the magnitude of the divisor, to give the nearer of the two prospective
quadratic roots. The inverted arrangement of the standard quadratic solution is preferred, for accuracy.
With the conventional expression, the nearer root uses a subtraction with subtractive cancellation accuracy
loss. If a real root is expected then the root kernel should be checked to be positive.

In fact the method was invented by Muller for obtaining complex roots, and then found to work well for
real roots too (see Muller, 1956). Efficient implementations are possible, particularly when using only one
new function evaluation per iteration. The order of convergence is given as 1.84 on a single root and 1.23
on a double root. In the basic symmetrical method, there is some doubt over how to choose the reduced
offset spacing, a problem avoided in the other method.

When approaching the limiting accuracy, Muller’s method tends to suddenly increase the error, as do
methods using a numerical derivative, so careful attention must be paid to timely exit from the loop. Conte
and de Boor discuss the method in some detail.

These three methods, secant, regula falsi and Muller’s method, all have fast convergence in phase
2, and do not need derivatives, so they obviously have potential application to suspension position
iterations.

17.10 Newton’s Iterations

Newton’s iteration is also known as Newton—Raphson iteration. It was described by Newton in 1669,
published in the book Algebra by Wallis in 1685, and again by Raphson in modified form in 1690. It is also
known as Newton’s first-order method, which is misleading because it has quadratic convergence.
Successive x values are derived by modelling the function by its tangent. Hence, the function value fand
derivative value f” are required at the current point, giving

fx
XK+1 = XKk — 7~

Ik



Iteration 349

This explicit equation is due to Raphson. This method has quadratic convergence to the root if the function
is well behaved locally, but is unsuitable for erratic functions. In other words, it is attractive when an
analytical derivative is easily available, and fast but perhaps risky. A particular danger is in striking a point
with f/ = 0. It is at the other end of the spectrum from a binary search for a root, which is safe and steady.
This method is in wide use.

The convergence factor of 2 (quadratic convergence) applies to one cycle, which requires evaluation of f
and f’. The convergence factor per evaluation is therefore \/ 2 =1.414, which is actually less than that for
the secant method. Considering that the derivative is probably more easily evaluated than the function
itself, possibly an effective convergence factor slightly better than \/ 2 should be admitted.

A sufficient, but not necessary, condition for convergence of the Newton—Raphson method is that f” and
/" do not change sign in the interval [x;, r] and /" and f” have the same sign (see Lapidus, 1962). These
conditions are easily tested. Specifically, it is required for convergence that the initial error is e < 2f”/f".

A possible alternative is the secant method, but the analytic derivative of Newton’s method may be safer,
particularly near to completion.

Schroder iteration is a Newton first-type iteration modified to account for a multiple root or root cluster.
The explicit expression is

fe

XK+1 =Xk — P
Ik

where p is an integer adjusting for the root multiplicity. This can be extremely effective, particularly on an
isolated multiple root, when it can step almost exactly on to the root instead of giving only linear
convergence. The way that this works is easily understood from a parabola in two dimensions touching the
axis, adouble root, where two steps of Newton’s first iteration finds the root pair. A difficulty is that the root
multiplicity is not normally known in advance. Schroder’s original paper (Schroder, 1870) is in German;
see also Rall (1966).

The following expression for an estimate of the multiplicity is due to Ostrowski (1973). Normal
Newton—Raphson iteration is applied twice giving iterates x; and x, and x3. Then

o 1+ X1 — X2
p= 2 X3*2X2+X1

where the Gaussian brackets indicate that the value must be not less than 1.

Halley’s iteration, also known as Newton’s second iteration, is sometimes called Newton’s second-
order method, which is misleading, because it has cubic convergence. This is an iteration which also uses a
second derivative, giving faster convergence than Newton’s iteration for well-behaved functions,
preferably with analytic derivatives. The basic equation is

f

XK+1 = XK — ——7~
O
/ <2f’)

where f, ' and f” are evaluated at xg. This may also be expressed as

2ff
P/

2 f/2 —ff"
Halley’s iteration is also useful when there are multiple roots, as convergence of the first method is then
only linear.

These iterations have potential application to suspension solution, but as they require derivatives it is not
sufficient to have only the suspension positions. The derivative could be obtained by a position increment
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(i.e. use a numerical derivative), but a better way is to use a computed three-dimensional velocity diagram
of the suspension to give the derivative, this being equivalent to an analytical derivative. Similarly, the
second derivative could be obtained as a numerical derivative from a velocity solver, or as an analytical
derivative from a computed three-dimensional acceleration diagram solution of the suspension.

17.11 Other Derivative Methods

In general, a greater convergence rate than quadratic may be achieved in favourable circumstances by the
use of additional information. Such higher-order iterations typically require three items of function
information. This may be found locally from f, f and f”, giving several other iterations. The method of
interpolation varies, but typically a quadratic equation (parabolic curve) is fitted to the local information
and the roots of this are then found, the nearer one being selected as the new iteration point. The result is
several interpolation formulae, which may usually be expressed as

Xy+1=xy —Co

f/

where Cis a variable ‘correction factor’ on the simple Newton iteration. For example, Halley’s iteration is

N 2ff e (f 277
B Y VA Y T

This can be expressed by its correction factor

o2
72f/27f//71_ﬂ
27

When using the two derivatives at one point, as may be expected by dimensional analysis, the group
Ff"/f"* occurs frequently, and with an extra factor of 1/2 may usefully be called g:

_ ffl/
2"

The correction factor used in Halley’s iteration is then simply

As another example, Olver’s iteration, also cubically convergent, is

1 1
XK +1 = XK ——EJ;T,G)
which has C=1+g.

Cauchy’s iteration also uses the function value and its first two derivatives at one point. Its equation is
2f
f/ + f/2 o sz//

with the sign of the root taken to maximise the absolute value of the denominator, going to the nearest
prospective root.

XK+1 = XK —
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Table 17.11.1 Single-point high-order iterations using £, ', and f”

Newton’s iteration: CcC=1
1
Halley’s iteration: =
1-g
Olver’s iteration: C=1+g¢
2
Cauchy’s iteration: C=—_ -~
Y 1++1—4g

o N
1+ (N—1)(N—1-2Ng)

Laguerre’s iteration
(N is the polynomial order)

Various such common iterations are characterised in Table 17.11.1 in terms of the correction factor g.

When g goes to zero, as normally happens as aroot is approached, then these expressions all tend to 1. If
Laguerre’s iteration is generalised by using an integer K instead of N, then setting K =1 gives Newton’s
first-order iteration, and setting K =2 gives Cauchy’s iteration. When actually using the above expres-
sions, it is usually better not to calculate g and substitute, but to expand the complete expression for Ax in
the form most favourable for accurate calculation.

When Cauchy’s iteration and Laguerre’s iteration are expanded binomially in small g they tend to
1/(1—g) and ultimately to 1. With the square root there is extra calculation, but the possibility arises of a
complex number result from an initially pure real root estimate. In some cases this may be regarded as an
advantage, in that a complex root may be found without the need for an initially complex root estimate.

Other possibilities arises, apparently unnamed, for example:

C=+/1+42g

which expands for small g into 1 + g.

A method involving use of two points with two function values and the derivative at one of the points is
straightforward, but it appears to be unnamed. It may have some advantages, particularly when itis desired
to maintain root brackets. With two points, then instead one function value and two derivatives may be
used, which is slightly easier. A quadratic equation is fitted to these values, with an easy solution of three
simultaneous equations, and solved for the nearest root. It does not appear to be widely used, possibly
because itis not well known, possibly because it requires rather more calculation than competing methods.

The function value and derivative value at two points is yet another possible method, requiring the fitting
of a cubic, like a spline. Solution of the root of the cubic is, however, a less convenient aspect.

The potential application of these methods to suspension analysis is evidently similar to that of Halley’s
iteration.

17.12 Polynomial Roots

It is often required in scientific computing to find the roots of a polynomial. In practical scientific and
engineering work, the coefficients are usually real, being calculated from the dynamical properties of the
system, such as masses, angular inertias, stiffnesses, damping coefficients and so on, or being the result of
a curve fit to experimental data. In the case of suspension geometry, a polynomial could be fitted to the
curve of Zgg against Z; gy, and used to obtain an estimate of the lower ball joint position for a given
suspension bump. As a specific case, for an example double-transverse-arm suspension, such a fifth-order
polynomial had coefficients as in Table 17.12.1. These coefficients are also of some interest in their own
right, revealing some useful information about potential iteration issues on the true function rather than on
the polynomial approximation. The gradient C(1) is close to 1.0. so a simple fixed-point iteration is likely
to be reasonably good.
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Table 17.12.1 Polynomial fit coefficients: Zsg = Cy + C Zyy + - . .

0) = -0.213431204422253
1) = 1.06535142457698
2) = -0.858178364024349
3) = 5.51778621761935
4) =-16.4240250458009
5) = 20.5603137932280

There have been many polynomial root finding programs. There are several fundamentally different
methods, each with its strengths and weaknesses. Some methods find all the roots simultaneously, being
based on an electrostatic analogy. These seem to be relatively inefficient, because methods that find only one
root at a time have the advantage that they can use deflation to simplify the subsequent problem. However,
simultaneous root finders do avoid the problems of deflation — loss of accuracy in subsequent roots.

In the case of an odd-order polynomial there must always be at least one real root, so it is common
practice then to find that one real root first. For an even-order polynomial, the common scientific problem,
the usual approach is to iterate on a single generally complex root, for example by Laguerre’s method,
Madsen’s method, or the Jenkins—Traub method. An alternative is to extract a wholly real quadratic factor
by Lin’s method or Bairstow’s method, although it is difficult to make these completely reliable with
regard to convergence. Another possibility is to factor into two parts with real coefficients, say an eighth-
order into two quartic factors, again by iteration, but again with some reliability problems.

Madsen’s method uses Newton’s first iteration on a complex root, but with multiple steps as proposed by
Schroder (see above). This helps greatly with multiple or closely spaced roots (see Madsen, 1973, which
includes a program in Algol).

Jenkins and Traub produced an elaborate program to find the roots of a polynomial aiming for good
performance on difficult cases, for example when there are multiple roots or roots separate but close
together. This uses various complex shifts. Also careful attention is given to estimating the prospective
accuracy to give the best exit conditions (Jenkins and Traub, 1972; Jenkins, 1975). The real-coefficient
program seems not to work correctly as published, but both programs repay study for the methods used.

Laguerre’s method is an iterative method for finding the real or complex roots of a polynomial with real or
complex coefficients. A program is given in Press et al. (1992). Convergence is not absolutely certain in all
cases, butitis quite reliable in practice, and fast with cubic convergence to a single root. It usually takes only
about four iterations for 8-byte (15-digit) real accuracy, so the efficiency is usually very good. Multiple roots
have linear convergence. The underlying theory is quite simple, and involves an assumption that the desired
root is at one distance from the estimate whilst all the others are at some other (much greater) distance. There
is quite a lot of work in the loop, with complex-number evaluation of the polynomial and its first two
derivatives, which are then combined to give a correction term to the root estimate. The Press et al. program
includes a scheme for breaking out of a closed cycle that may occasionally occur.

Given a polynomial f of order N and a (generally complex) root estimate z, possibly starting with zero,
the first and second polynomial derivatives are f’ and f”. Evaluate first the two intermediate values
G =f'/f and H = G* — f" /f. Laguerre’s correction to the root estimate is then given by

N
G+/(N-1D(NH- G

dz=—

where the sign is chosen to maximise the absolute value of the possibly complex denominator, naturally, to
minimise the correction, so always trying to approach the nearest true root. Using 1 instead of N, the
correction reduces to a Newton iteration, and using 2 instead of N gives a Cauchy iteration.

The equation above is easily modified for a root multiplicity M, but the improvement seems to be
advantageous in practice only for a double root. Parlett’s criterion is that, after three iterations, if a
proposed increment exceeds 0.8 times the previous one then the root should be treated as multiple.
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Bairstow’s method is the extraction of a quadratic factor (x? + ux +v) with real coefficients from a
monic polynomial with real coefficients, using Newton’s iteration extended to the two unknowns # and v
simultaneously by partial derivatives. The starting values are often taken as zero, sometimes as v = ¢/ cz,
u = ¢ /¢, where ¢ counts from zero as the polynomial constant. If convergence fails, which is quite likely,
other starting values may be successful. The method can be applied usefully to polynomials of order 3 or
more, although in the case of the cubic it is slower than extracting a single real root. For cubics and quartics
it can be applied analytically, whereas higher orders require synthetic division. The starting polynomial is
divided by the candidate quartic factor to leave a remainder

R=Rx+Ry

where the remainder coefficients are functions of the coefficients of the polynomial and of the putative
factor. For a good factor these are zero, so an iteration is applied to reduce them. The analytic partial
derivative of each is obtained with respect to # and v. This gives two simultaneous equations to solve for an
ideal simultaneous correction given local linearity, with the solution
R R R OR L OR
Au— v . py—__Ou Ou
D ’ D

where D is the Jacobian of the left-hand side of the two equations. The method may fail by (1) division by a
zero denominator required, (2) divergence, (3) failure to converge due to oscillation, (4) convergence too
slow. In practical application, the unreliability is a significant problem, and the method is only usable with a
suitable initial estimate of the quadratic factor coefficients. When convergence occurs, excellent accuracy
can be achieved. Therefore, in general, the method is at its best when used for polishing a quadratic factor
found initially by other means. The zero denominator problem could possibly be dealt with in some cases by
making an arbitrary small adjustment to « or v or both, to move away from the difficult spot.

Lin’s method is iterative extraction of a quadratic factor with real coefficients from a polynomial with
real coefficients, using synthetic division. Setting the remainder terms to zero gives two equations for new
estimates of the factor coefficients. Lin’s method tends to oscillate, and usually benefits from an iteration
factor less than 1. Convergence is not reliable unless a good starting estimate is available, which limits the
usefulness of the method. When convergence occurs, accuracy is excellent. For polynomials with real
coefficients, as arise in many practical problems, quadratic factor extraction can be performed in all-real
arithmetic. It is claimed to be particularly useful when there are two roots coincident or close together.

Lin’s method is as follows. A polynomial of order N of the form

Wtay XN aix+ag =0
can be expressed as a quadratic term times another term of order N-2 with a linear remainder:
(P +px+q) (N2 by XN T+ bsx + b))+ (bix+by) =0

It is desired to reduce the remainder term to zero, when the quadratic expression will be a true factor.
Assuming, then, that b =0 and by =0, and comparing coefficients,

by_1 = ay— —pP

by_s =ay_» —pby_1 —¢q

by_y=an_y —pbyy1-y—qbn 2y
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_a; —qbs
==55
=5,

Note that the remainder coefficients are not actually used, being set to zero. The last two equations above
are the new quadratic factor coefficients. Initial estimates must be made by some means for p and ¢q. From
these and the original a coefficients, by_; can be calculated. This allows by_ to be calculated, and so on.
This is equivalent to the solution of two unknowns by direct iteration. In effect, synthetic division is used.
The process is to be terminated in the usual way when the changes become sufficiently small. The process
as described appears unreliable, convergence being problematic, this obviously depending on the initial
estimates of the factor coefficients.

17.13 Testing

As test of a zero search for suspensions, an equivalent fifth-order polynomial for Zgg(Z; ;) with
coefficients as in Table 17.12.1 was used, producing sample loop results for a simple fixed-point iteration
as in Table 17.13.1. The numbers of loops and evaluations for various methods vary somewhat with the

Table 17.13.1 Loop results from fixed-point iteration test on polynomial

Fixed Point Iteration, cf= -1.00000000000000
1 0.211396869688034 -0.111396869688034
2 0.209960163628131 1.436706059902981E-003
3 0.209998492473714 -3.832884558244154E-005
4 0.209997479434359 1.013039354513801E-006
5 0.209997506215864 -2.678150476387309E-008
6 0.209997505507851 7.080122876867989E-010
7 0.209997505526569 -1.871747201676044E-011
8 0.209997505526074 4.948541576510479E-013
9 0.209997505526087 -1.307287611496122E-014
10 0.209997505526087 3.330669073875470E-016
11 0.209997505526087 0.000000000000000E+000

Number of loop starts, evaluations =11 12
Final x,v=0.20999750552608684E+00 0.00000000000000000E+00

FPI Accelerated Convergence

1 0.209978457157241 -0.111396869688034
2 0.209997505524439 -1.955187930216540E-005
3 0.209997505526087 -1.690925177655345E-012

Number of loop starts, evaluations =4 9
Final x,v=0.20999750552608684E+00 0.00000000000000000E+00

Secant Search, oldest point discarded:

1 0.208025290425772 -2.023673967893436E-003
2 0.209946718440993 -5.212926912367966E-005
3 0.209997522583638 1.750849540349542E-008
4 0.209997505525938 -1.527111770371903E-013
5 0.209997505526087 2.775557561562891E-017
6 0.209997505526087 0.000000000000000E+000

Number of loop starts, evaluations =6 8
Final x,v=0.20999750552608684E+00 0.00000000000000000E+00
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Table 17.13.2 Comparison of methods on sample polynomial iteration

Method Loops Evaluations
Binary Search 53 55
Fixed Point Iteration 11 12
FPI Accelerated 4 9
Secant Search 6 8
Regula Falsi 7 9
Muller’s Method 4 7
Newton 6 12
Halley 5 15
Olver 5 15
Cauchy 5 15
Laguerre 4 12

exact values used, but were typically in Table 17.13.2. All of the methods were capable of achieving the
true zero. The most notable point is that the high-order methods do have fewer loops but the number of
evaluations is not always greatly improved. Muller’s method showed the fewest evaluations, but not
greatly better than the accelerated fixed-point iteration, secant or regula falsi, and is more tricky to
implement. The gradient of the function is quite close to 1, so the standard fixed-point iteration is quite
good, and the acceleration advantages are not so great.

Tables 17.13.3-17.13.6 show the results of iterations applied to a true geometric solution of an example
suspension to obtain Z; gy for a given Zgg. The results can be seen to be similar to those for the polynomial.
Even the simple fixed-point iteration would be satisfactory for most purposes. Actually, amongst these
examples, Newton’s method is potentially the fastest because the gradient changes slowly and really needs

Table 17.13.3 Fixed-point iteration

Test Fixed-Point Iteration on ZSB:

zs req=1.000000000000000E-002

K dz3 z9 err

1 0.0100000000000000 0.0102829990247792 0.28E-03
2 0.0097170009752208 0.0099914451983580 -0.86E-05
3 0.0097255557768628 0.0100002581161973 0.26E-06
4 0.0097252976606655 0.0099999922116523 -0.78E-08
5 0.0097253054490133 0.0100000002350037 0.24E-09
6 0.0097253052140096 0.0099999999929091 -0.71E-11
7 0.0097253052211005 0.0100000000002139 0.21E-12
8 0.0097253052208866 0.0099999999999936 -0.64E-14
9 0.0097253052208931 0.0100000000000004 0.43E-15
10 0.0097253052208926 0.0099999999999999 -0.97E-16
11 0.0097253052208927 0.0100000000000000 -0.42E-16
12 0.0097253052208928 0.0100000000000000 0.14E-16

Number of loop starts, evaluations =13 13

dz3 = 9.725305220892787E-003
z(9) = 1.000000000000001E-002
err = 0.14E-16
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Table 17.13.4 Accelerated fixed-point iteration

Test Accelerated Fixed-Point Iteration on ZSB:

zs req=1.000000000000000E-002

K dz3 z9 erl er2

1 0.0097253047610143 0.0099914451983580 0.28E-03 -0.86E-05

2 0.0097253052208929 0.0100000000142949 -0.47E-09 0.14E-10
3 0.0097253052208928 0.0100000000000000 .18E-15 -0.42E-16

o

Number of loop starts, evaluations =48
dz3 = 9.725305220892839E-003

z(9) 1.000000000000007E-002

err = 0.69E-16

Table 17.13.5 Secant iteration

Test Secant Iteration on ZSB:

zs req=1.000000000000000E-002

K dz3 z9 err

1 0.0097050902524657 0.0099791751548269 0.10+100
2 0.0097253431289573 0.0100000390518932 -0.21E-04
3 0.0097253052207387 0.0099999999998411 0.39E-07
4 0.0097253052208929 0.0100000000000002 -0.16E-12
5 0.0097253052208927 0.0100000000000001 0.21E-15
6 0.0097253052208926 0.0100000000000000 0.69E-16

Number of loop starts, evaluations =79
dz3 =9.725305220892617E-003

z(9) =1.000000000000001E-002

err 0.14E-16

Table 17.13.6 Newton iteration

Newton’s method with 3D velocity diagram for the derivative:

zs req=1.000000000000000E-002

K dz3 z9 err slope

1 0.0100000000000000 ©0.0000000000000000 -0.10E-01 1.000000000000
2 0.0097253204527308 0.0102829990247792 0.28E-03 1.030287939502
3 0.0097253052208927 0.0100000156914399 0.16E-07 1.030173761288
4 0.0097253052208928 0.0100000000000000 =-0.42E-16 1.030173754969
5 0.0097253052208928 0.0099999999999999 -0.69E-16 1.030173754969

Number of loop starts, evaluations =58
dz3 = 9.725305220892773E-003

z(9) = 9.999999999999931E-003

err =-0.69E-16
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to be evaluated only once or twice, although a similar modification could be applied to the secant iteration.
For those seeking a particularly efficient implementation, there are many possibilities here for perfor-
mance improvements above the basic fixed-point iteration, applicable to more than just suspensions, of
course.
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Appendix A

Nomenclature

Chapter 1 — Introduction - No Nomenclature

Chapter 2 — Road Geometry

A
AL
AN
Fon
8

h

J
kgrs
Lw

EFFEREES

XY,z
XYz

rad/m

BEBEBZEBBEBBEBB|ZZ§B

acceleration

lateral acceleration in road plane
acceleration normal to the road
normal pseudo-force in vehicle-fixed axes
gravitational field strength

ride height

jerk, dA/dt

road torsion rate

wheelbase

moment

normal force at inner wheels
normal force at outer wheels

data point count

path radius of curvature

path banking radius of curvature
path horizontal radius of curvature
path lateral radius of curvature
path normal radius of curvature
path vertical radius of curvature
path length from a reference point
path length of projection into horizontal plane
axle track (tread)

weight force

ride-height sensor spacing
forward axis

vehicle or path-fixed axes
Earth-fixed coordinate axes

axis to left

Suspension Geometry and Computation J. C. Dixon
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Zr
Greek

<ATZOIZIOQ®m>

Chapter 3 —

C

In

fr
G
H

kgrs
Lw
nsr

SH

m axis upwards

m road altitude above datum plane
rad vehicle attitude angle

rad road camber angle

rad wheelbase normal curvature angle
rad road longitudinal slope angle

m™' path curvature

m™' path banking curvature

m! path horizontal curvature

m™! path lateral curvature

m™! path normal curvature

m! path vertical curvature

rad path angle

m lateral position from road centreline
m ls7! car (vehicle) turn-in

m~?2 path turn-in

m? driver-perceived path turn-in

rad axle roll angle (on tyres)

rad body roll angle

rad road lateral slope angle (bank, camber)
rad suspension roll angle

rad roll angle of sensor reference line
rad angle of path curvature from horizontal
rad vehicle heading angle

axle

body

car

horizontal

lateral

normal

path

road

vertical

Road Profiles

m cosine component amplitude

Hz natural frequency

Hz frequency of road wave at vehicle speed V.
- gradient

m height

rad/m road torsion

m wheelbase

cycles/m  road wave spatial frequency (see wsr)
m path length

m path length in XY plane

m sine component amplitude
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T m vehicle track (tread), path spacing

Tr s period of a road wave at speed V

% m/s vehicle speed

X m longitudinal position, straight path length
V4 m vertical position

7B m road banking (camber) height

Zgo m road banking amplitude

Zr m height of left path

Zr m height of right path

Zs m road centreline height

Zso m road centreline amplitude

Zy m total component of a sinusoid

Greek

0 rad angle

Or rad road pitch angle

A m sinusoid wave length

AR m road wave length

o) rad phase angle

drp rad road banking angle

brr rad road torsion angle between two axles

WR rad/s road fluctuation effective temporal frequency
WsR rad/m road fluctuation spatial frequency (see ngg)
Subscripts

B antisymmetrical (banking)

L left path

R right path

S symmetrical (centreline)

0 total amplitude (with phase angle)

Chapter 4 —

A

a

b
Cc
Cr
Cw
Dp
Dy

LCP

Road Geometry

m/s>

m
m

Ns/m
Ns/m
Ns/m

N

m/s>

m
rad/ms™
N/m
N/m

N/m
m

2

acceleration

front axle to centre of mass

rear axle to centre of mass

cushion damping coefficient

tyre damping coefficient total
suspension damping coefficient (total)
discomfort of passenger

discomfort of tyre

tyre normal force

gravity (ISO standard 9.80665 m/s”)
tyre vertical deflection

roll gradient

cushion stiffness

tyre vertical stiffness total

suspension stiffness (wheel rate) total
tyre contact patch length
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mg kg vehicle body mass

mp kg passenger mass (effective on seat)

my kg unsprung mass total

Ry m tyre unloaded radius

Ry m tyre loaded radius

Ry m tyre rolling radius

Rce m contact patch end radius

Ry — motion ratio

T m vehicle track (tread)

\% m/s velocity

Vx m/s longitudinal velocity

Z m vertical position

z m ride position (from static)

Zg m vehicle body vertical position

ZB m vehicle body ride position

Ife m cushion ride deflection (compression positive)
Zp m passenger vertical position

Zp m passenger ride position

Zr m road vertical position

Zg m suspension ride deflection (compression positive)
1 m tyre ride deflection (compression positive)
Zw m wheel vertical position

Greek

0 rad angle

Ocp rad contact patch subtended angle

ba rad axle roll angle

o rad body roll angle

dpr rad body torsion angle

dr rad road bank (roll) angle

drr rad road torsion angle

g rad suspension roll angle

Q rad/s wheel angular spin speed

Subscripts

SgCcwnwr @ oA W

body (vehicle)
cushion

front

inner cornering side
left

outer cornering side
rear

right

spring

suspension
unsprung

wheel

static
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Chapter 5 — Vehicle Steering

b m kingpin offset

c m caster offset

f — a factor

fa — Ackermann factor

G — steering gear ratio

Gn — mean steering gear ratio

/ — x-direction cosine

L m wheelbase, a length

L m front axle to centre of mass

Lgp m kingpin (steer axis) length lower to upper point
L, m rear axle to centre of mass

m — y-direction cosine

n — z-direction cosine

D m a length (Figure 5.3.4)

q m a length (Figure 5.3.4)

R m path radius to centre of mass

R m path radius to centre of front axle

Ror m offtracking

R. m path radius to centre of rear axle

T m track (tread)

Vv m/s velocity

Wyp m kingpin (steer axis) diagonal horizontal spacing
Xcr m caster trail

Xkc m kingpin (steer axis) caster spacing X — Xp
Xkcw m kingpin (steer axis) caster spacing seen by steered wheel
Yco m caster offset

Y1 m kingpin (steer axis) inclination spacing (Y5 — Y, left wheel)
Yxiw m kingpin inclination of steered wheel

Zg m suspension bump

Zgy m/rad steer jacking

ZSIA m/rad steer jacking of an axle

Zx1 m kingpin (steer axis) vertical spacing

Zxp m kingpin height lower to upper point

Greek

a rad tyre slip angle

B rad attitude angle

Y rad camber angle of road wheel

Vs rad wheel camber angle due to steer

13} rad steer angle of road wheel

ok rad kinematic steer angle of road wheel

Ok rad kinematic steer angle of tractor unit

Oref rad reference steer angle of road wheel

ds rad steer angle of hand wheel

Os rad yaw angle at articulated fifth wheel

EBCas] rad/m linear bump caster coefficient

EBCas? rad/m? quadratic bump caster coefficient

&scl — linear steer camber coefficient (deg/deg)
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&sc2
&s11
&sn2
ESKC1
ESKC2
EsKI1
ESKI2
A

Ao
0s
Okc
Oxco
9KCW
Okcr
Ox1
9KIW
Okp
OStA
Osiar
O1rRGE
Pbsia
Ykp

l1[/KPW

Subscripts

SCCcCERTOORAAT™
o= 0

Chapter 6 —

a

rad™
m/rad
m/rad?

rad ™!

rad™!
rad
rad
rad
rad
rad
rad
rad
rad
rad
rad
rad
rad
rad
rad
rad
rad

front

quadratic steer camber coefficient

steer jacking linear coefficient

steer jacking quadratic coefficient

steer kingpin caster linear coefficient (rad/rad)

steer kingpin caster quadratic coefficient (rad/rad?)
steer kingpin inclination linear coefficient (rad/rad)
steer kingpin inclination quadratic coefficient (rad/rad®)
Langensperger angle

Langensperger angle, front, zero speed

body pitch angle

kingpin (steer axis) caster angle

kingpin (steer axis) static straight caster angle
kingpin caster angle of steered wheel

kingpin (steer axis) caster angle relative to the road
kingpin (steer axis) inclination angle

kingpin (steer axis) inclination angle of steered wheel
kingpin (steer axis) total angle from vertical

steering linkage Ackermann effect angle

ideal steering linkage Ackermann effect angle

track rod geometry error

steer roll jacking of an axle

kingpin (steer axis) sweep angle

kingpin (steer axis) sweep angle seen by steered wheel

kingpin caster
kingpin inclination
kingpin (steer axis)

left

lower point of steer axis

rear
right

upper point of steer axis
initial, static, or at zero speed

Bump and Roll Steer

8888

N71

m

8883888458

centre of mass to front axle

centre of mass to rear axle

rack height error

track-rod length error

variation of ey with axle load

variation of egy with axle suspension bump
axle suspension vertical stiffness
steering-arm length perpendicular to track rod
ideal track-rod length

track-rod length

axle track (tread)

axle mean suspension bump deflection
suspension bump deflection
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Greek

oA
Oa0
OBs
OpBs
Ors
ORr
Oru
Os

ot
Oro

3
&Bs1
&Bs2
EDBSI1
EpBS2
ERS1
ERS2
ERT1
ERT2
ERU1
ERU2
EVHUI1
EVHU2
EvPUIL
EvPU2
EVRU1
EVRU2
0s
PA
os

Subscripts

ol e

Chapter 7 —
Cy

Cy

kpags

rad
rad
rad
rad
rad
rad
rad
rad
rad
rad
various
rad/m
rad/m>
rad/m
rad/m?

rad ™!

rad”!
rad !
rad/m
rad/m?

rad”!

rad !

rad
rad
rad

front
left
rear
right

axle steer angle

axle static steer angle

single-wheel bump steer angle

axle double-bump steer angle

axle roll steer angle

axle roll toe-out angle

axle roll understeer angle

driver-controlled steer angle

axle toe-out angle

static toe-out angle

suspension geometric coefficients (various units)
single-wheel linear bump steer coefficient
single-wheel quadratic bump steer coefficient

axle linear double-bump steer coefficient

axle quadratic double-bump steer coefficient

axle linear roll steer coefficient (rad/rad)

axle quadratic roll steer coefficient (rad/rad?)
linear axle roll toe coefficient (rad/rad)

axle quadratic roll toe coefficient(rad/rad?)

axle linear roll understeer coefficient (rad/rad)

axle quadratic roll understeer coefficient (rad/rad?)
vehicle linear heave understeer coefficient

vehicle quadratic heave understeer coefficient
vehicle linear pitch understeer coefficient (rad./rad)
vehicle quadratic pitch understeer coefficient (rad/rad?)
vehicle linear roll understeer coefficient (rad/rad)
vehicle quadratic roll understeer coefficient (rad/rad?)
suspension pitch angle

axle location-axis inclination angle

suspension roll angle

Camber and Scrub

swing centre lateral movement coefficient
swing centre vertical movement coefficient
variation of axle roll angle with suspension roll
track (tread)

contact patch horizontal velocity

suspension bump velocity

swing centre lateral coordinate

swing centre vertical coordinate

body vertical ride position
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Zg m suspension bump
Zw m wheel vertical ride position
Greek
« rad slip angle

rad body attitude angle
Y rad camber angle
YA rad axle camber angle
YBC rad bump camber angle
Vd rad semi-difference of wheel camber angles (= I"5)
YL rad left wheel camber angle
Ym rad mean of wheel camber angles (= 74)
YR rad right wheel camber angle
Yo rad static camber angle
r rad inclination angle
r, rad axle mean inclination angle
I ar: rad axle roll inclination angle
Iy rad inclination angle of left wheel
I'y rad inclination angle of path (road) surface
I'y rad inclination angle of right wheel
I'y,, rad inclination angle of left wheel relative to the local road surface
I'wr rad inclination angle of right wheel relative to the local road surface
EARCI — axle linear roll camber coefficient
EARC2 — axle quadratic roll camber coefficient
EARI — axle roll inclination coefficient (rad/rad)
EARII — axle first roll inclination coefficient (rad/rad)
EARD2 rad ! axle second roll inclination coefficient
eBC rad/m bump camber coefficient
EpC1 rad/m linear bump camber coefficient
EBC2 rad/m? quadratic bump camber coefficient
EBSC — local bump scrub coefficient ds/dzg
EBScl — linear bump scrub coefficient
EBSC2 m ! quadratic bump scrub coefficient
EBScd — local bump scrub rate coefficient
EBScdD — initial bump scrub rate coefficient
EBScd] m! linear bump scrub rate coefficient
EBScd2 m 2 quadratic bump scrub rate coefficient
Osa rad swing arm angle
ba rad axle roll angle
bs rad suspension roll angle
Subscripts
L left
R right
0 static

Chapter 8 — Roll Centres

B m lateral position of GRC in vehicle coordinates
Jir — load transfer factor
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Fiy
Frr
Fy
F,
F

Greek

3

EBSc
EBScR
&Bscl
EBSc2
EBscd0
&BScdl
EBScd2
EB1,DB
&B1,Roll
EB1,Roll,ZB
EH1,DB

€H1,Roll
EH2,Roll
£71,DB
Osa

bs

N

“| BEEB88Z222Z7

Z
3

BE3BE3BEBBEEBSE

var.

m/rad
m/rad?

rad
rad

link jacking force

suspension normal force lateral transfer (‘load transfer’)
lateral force in suspension links

suspension force reacted by springs

suspension force reacted by links

gravitational field strength

height of GRC in vehicle coordinates

height of body centre of mass in vehicle coordinates
height of FRC in vehicle coordinates

height of KRC in vehicle coordinates

anti-roll factor

linear coefficient in B(Ay) [m/(m sfz)]

quadratic coefficient in B(Ay) [m/(m s

linear coefficient in H(Ay) [m/(m s~ 2)]

quadratic coefficient in H(Av) [m/(ms ™ 2)?]

linear coefficient in zo(Ay) [m/(ms~2)]

linear coefficient in ¢g(Ay)

mass of body (sprung mass)

moment of link force

moment of body weight force

track (tread)

lateral position of GRC in road coordinates

lateral position of body centre of mass in roll
lateral position of body pivot point in roll

axle suspension double bump (mean of two wheels)
body heave

suspension left bump

suspension right bump

height of GRC in road coordinates

body heave after roll

suspension geometric coefficient

bump scrub coefficient in vehicle coordinates

bump scrub coefficient in road coordinates

linear bump scrub coefficient

quadratic bump scrub coefficient

bump scrub rate at zero bump

linear bump scrub rate variation coefficient

quadratic bump scrub rate variation coefficient

linear variation of B in double bump

linear variation of B in roll, with respect to suspension roll angle
linear variation of B in roll, with respect to wheel bump Zz (m/m)
linear variation rate of GRC height in double bump, in vehicle body
coordinates

linear variation of GRC height in roll

quadratic variation of GRC height in roll

linear variation rate of GRC height in double bump, in road coordinates
angle of swing arm

suspension roll angle
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Subscripts

L
R
L+R
L-R
L xR

Chapter 9 —
C

CX,FX
C}',FY
C}',MZ
CB,FY
Cs mz
Cs px,wCH
F

Fx
Fy
Fz
ks.c
kS,FY
kS,MZ
Ks
KZT
meg
mg;
Mp
Mx
My
Mz
Ry

X, Y Z
Xe, Yo, Zc

Greek

Vc
G
oG

Oc
0

left
right

sum of left and right parts

left part minus right part
product of left and right parts
initial position, constant
linear, or spring part of force
quadratic, or link part of force

Compliance Steer

various
m/N
rad/N
rad/Nm
rad/N
rad/Nm
rad/N

N, Nm
N

N

N
rad/m.s™
rad/m.s™
rad/m.s™
N/m
N/m

kg

2
2
2

rad
rad
rad
rad
rad
rad
rad
rad
rad

compliance matrix

compliance coefficient for X displacement due to Fx
compliance camber coefficient for Fy

compliance camber coefficient for M,

compliance steer coefficient for Fy

compliance steer coefficient for My

compliance steer coefficient for Fx at wheel centre height
force—-moment vector

longitudinal force

lateral force

normal force

compliance steer gradient

compliance steer gradient due to Fy

compliance steer gradient due to Mz

suspension vertical stiffness (‘wheel rate’)

tyre vertical stiffness

front body mass (front sprung mass)

rear body mass (rear sprung mass)

driveshaft moment (torque)

overturning moment

pitch moment

yaw moment (aligning moment)

wheel loaded radius

tyre pneumatic trail

compliance linear and angular displacement vector
axis coordinates

compliance linear deflections

road wheel inclination angle, camber angle
road wheel compliance inclination angle
road wheel geometric inclination angle
road wheel steer angle

road wheel compliance steer angle

road wheel geometric steer angle

wheel hub pitch angle

wheel hub compliance pitch angle

wheel hub geometric pitch angle
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Subscripts

C
D
G
XY Z

Chapter 10 —

Frx
Fy

Hg

Jap
JaL
Jar

Jas
kSP

kTP
Ks
K,
LAD
LAE
Ly

ms

Mrxs
Mrx

Zsf

Greek

EBCas

GBCas

compliance
driveshaft
geometric

axis directions

Pitch Geometry

m front axle to centre of mass
m/s? braking deceleration (—Ay)
m/s longitudinal acceleration
m rear axle to centre of mass
N force

N effective spring force
N longitudinal load transfer

N axle vertical force

m height of vehicle centre of mass

m height of sprung centre of mass

— anti-dive coefficient

— anti-lift coefficient

— anti-rise coefficient

— anti-squat coefficient

Nm/rad pitch stiffness on suspension

Nm/rad  pitch stiffness on tyre vertical stiffness

N/m suspension vertical stiffness (one wheel)
N/m tyre vertical stiffness (one wheel)

m anti-dive pitch arm radius

m anti-dive pitch arm length

m wheelbase

kg vehicle mass

kg sprung mass

Nm moment

Nm suspension pitch moment

Nm total longitudinal pitch moment

— fraction of braking force at the front axle
— fraction of tractive force at the front axle

N weight force (mg)

m front suspension bump
rad/m bump caster coefficient

rad pitch angle of body

rad bump caster angle

rad angle of front line to wheel centre
rad angle of rear line to centre
rad caster angle

rad static caster angle

rad angle of front line to ground
rad angle of rear line to ground
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0s
bu

Subscripts
BCas

»n= =0 Ao

Chapter 11 —

Zcp
Zcp
zs
Zw
Zyy

Greek

Y

1)

EBC1
&BC2
EBKCI
EBKC2
EBKI1
EBKI2
EBScd0,T

rad suspension pitch angle
rad pitch angle of unsprung mass

bump caster

to wheel centre
caster

front

to ground
ideal

rear
suspension

Single-Arm Suspensions

N/rad tyre cornering coefficient dFy/da
N/rad tyre camber coefficient dFy/dy
tyre lateral force

height of pivot axis

height of pitch centre

height of swing centre

X direction cosine

a length

arm length pivot axis to wheel centre
pivot axis to contact patch/point
pitch arm length

swing arm length

Y direction cosine

Z direction cosine

plan view arm length

plan view length to contact point (=~ R,)
wheel loaded radius

pitch arm length, plan view
swing arm length, plan view
contact patch bump

contact patch height above datum
suspension bump

wheel bump

wheel centre height above datum

| |8538838 | 888 2

8288888882828

rad road wheel camber angle

rad road wheel steer angle

rad/m linear bump camber coefficient

rad/m>  quadratic bump camber coefficient

rad/m linear bump kingpin caster angle coefficient

rad/m*>  quadratic bump kingpin caster angle coefficient
rad/m linear bump kingpin inclination angle coefficient
rad/m? quadratic bump kingpin inclination angle coefficient
— total bump scrub rate coefficient
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EBScd0,X
EBScd0,Y
&Bs1
&Bs2

O

gAx

e

Ok

Oxc
bax
l:[’Ax

bk

Subscripts
0
Superscripts

i, v

Chapter 12 —

fBJH
HBJD

HpyL,
HBJM
Hpys
Hpgjyy
Hp
Hg

L

Lp
Ls
Lxr
Lxy
Ly
Lyu

rad/m
rad/m?
rad
rad
rad
rad
rad
rad
rad
rad

bump scrub rate coefficient, X component
bump scrub rate coefficient, ¥ component
linear bump steer coefficient

quadratic bump steer coefficient

arm angle about axis, wheel end up

pivot axis yaw angle (/2 — ifay)

angle of line pivot axis to contact patch/point
kingpin total angle from vertical

kingpin inclination angle

pivot axis angle (out of horizontal)

pivot axis sweep angle

kingpin sweep angle

initial, zero bump, conditions

circumflex cap indicates unit vectors

Double-Arm Suspensions

EB‘BEBEEBBEBBEBSEBSEBSEBBEBBE

Hpgjs/Hgjp, sum/difference height factor
Hpgjy — HgjL, height difference

static height of lower outer ball joint
Hpgjs/2 = (Hgyy + Hgjy)/2, mean height
Hgjy + Hgj, height sum

static height of upper outer ball joint
height of pitch centre

height of swing centre

length

length of pitch arm

length of swing arm

length of equivalent lower longitudinal arm
length of equivalent upper longitudinal arm
length of equivalent lower lateral arm
length of equivalent upper lateral arm

arc radius

pitch arm radius

swing arm radius

scrub

shortness, reciprocal of length

longitudinal shortness difference Sxy — Sx.
shortness of equivalent lower longitudinal arm
longitudinal shortness sum Sxy + Sxi
shortness of equivalent upper longitudinal arm
lateral shortness difference Syy — Syr.
shortness of equivalent lower lateral arm
lateral shortness sum Syy + Syr

shortness of equivalent upper lateral arm
local coordinate
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v m local coordinate

\%4 m/s velocity

w m local coordinate

y m lateral coordinate

YL m lateral displacement of lower ball joint

Yu m lateral displacement of upper ball joint

4 m vertical coordinate

Zg m suspension bump

Greek

VB rad bump camber angle

EBcas] rad/m linear bump caster coefficient

EBcas2 rad/m? quadratic bump caster coefficient

EBC1 rad/m linear bump camber coefficient

EBC2 rad/m? quadratic bump camber coefficient

EBScd — local bump scrub rate coefficient (at zg) (m/m)
€BScd0.X — longitudinal bump scrub rate static (m/m)
€BScdl X m! longitudinal bump scrub rate variation (m/m?)
€BScd0.Y — lateral bump scrub rate static (m/m)
€BScdl.Y m~! lateral bump scrub rate variation (m/m?)
EBScl — linear lateral bump scrub coefficient (m/m)
EBSC2 m! quadratic lateral bump scrub coefficient (m/m?)
0 rad angle

Os1. rad angle of strut slider from vertical

Oxp rad Oxu — OxL

Ox1. rad angle of equivalent lower longitudinal arm
Oxs rad Oxu + OxL

OxsL rad side-view angle of strut slider from vertical
Oxu rad angle of equivalent upper longitudinal arm
(%) rad Oyu —OyL

(22%9 rad angle of equivalent lower lateral arm

Oys rad Oyu + OyL

OysL rad front-view angle of strut slider from vertical
Ovu rad angle of equivalent upper lateral arm

¢ rad angle

Y rad angle

10} rad/s angular velocity

Q rad/s angular velocity

Subscripts

0 Static value (zero suspension bump)

Chapter 13 — Rigid Axles

Ci; var link space sensitivity matrix
E m link space length errors

H m roll centre height

Hp m axle vertical spacing of links

L, m,n — direction cosines (e.g. of a link)
Ly axle length between wheel centres
Lrizpy length in plan view between triangle points 1 and 3

8 B
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2N
=
[N

N B~ bR

ZAS
ZSBL
ZSBR

Greek
)

EAHP
EAHS
EAHSC, X
EAHSC,Y
EAHX
EAHY
EARP
EARS
EARSC,X
EARSc,Y
EARX
EARY

0

¢

ba
o
bs

Chapter 14 —

Co
Csp
e

F
Fp
Fx
Fin
fr
Fsx
Ky
Ksk
Kw
/

l

lwp
L

BB28B8E288888888

a radius

axle track (tread)

coordinate system

longitudinal coordinate (forwards)
surge, and a general variable
lateral coordinate (to the left)
sway

vertical coordinate (upwards)
heave

axle suspension heave (symmetrical double bump)
suspension bump left

suspension bump right

steer angle (axle yaw angle)

axle heave pitch coefficient

axle heave steer coefficient

axle heave scrub coefficient, longitudinal
axle heave scrub coefficient, lateral
axle heave surge coefficient

axle heave sway coefficient

axle roll pitch coefficient

axle roll steer coefficient

axle roll scrub coefficient, longitudinal
axle roll scrub coefficient, lateral

axle roll surge coefficient

axle roll sway coefficient

pitch/caster angle, angle generally

roll angle

axle roll angle (on tyres)

body roll angle

axle suspension roll

Installation Ratios

Ns/m
Ns/m

ZZz2ZEB

/m
/m
N/m

zZZZ

3 B

damper coefficient

effective damper coefficient seen at suspension
offset

force

force at damper

compression force at spring

force at point mass

rising rate factor

spring force active at suspension

spring stiffness

effective spring stiffness seen at suspension
total spring/bush wheel rate (mainly Kgg)
rocker arm length

X-direction cosine

length from wheel centre to pivot axis (in plan)
length
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Ly m spring length

m — Y-direction cosine

n — damper characteristic exponent
n — Z-direction cosine

R — motion ratio

R m™! motion ratio variation dR/dzg
Ram — motion ratio of item A relative to item B
Rapu — motion ratio for pitch in heave
Rp — damper motion ratio dxp/dzg
Rpc — damper coefficient ratio

Rpy m/rad  damper velocity ratio in roll
Rk — spring motion ratio dxg/dzg
R — motion ratio of a point mass
Rr — rocker motion ratio

Rr1. — rocker arm length motion ratio
Ry — rod angle motion ratio

Ryryo — rod angle motion ratio at 6 =0
t S time

T m axle track

u m/s X -velocity component

v m/s Y-velocity component

\% m/s velocity

Va m/s velocity of point A

(Vx, Vy, V) m/s velocity coordinates

Vb m/s damper compression velocity
Vk m/s spring compression velocity
Vp m/s pushrod velocity

Vs m/s suspension bump velocity

w m/s Z-velocity component

X displacement

Xp damper compression from static
XK spring compression from static
Xp pushrod displacement from static

m
m
m
m
X,Y, 2 m coordinates
m
m
m
m

Zp body displacement

Zp damper compression

Zg suspension displacement in bump

Zw wheel displacement

Greek

ap rad damper out-of-plane angle

ag rad spring out-of-plane angle

Y rad wheel camber angle

EAPH rad/m  axle pitch/heave coefficient

EpC rad/m  bump camber coefficient

€BScd - local bump scrub rate coefficient
EDBScd0 - linear bump scrub rate coefficient (m/m)
EDBSCcd] m ! quadratic bump scrub rate coefficient (m/m?)
Or rad rocker position angle

Orp rad rocker deviation angle

dr rad rocker included angle
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] rad rocker rod offset angle from tangent

Uz rad i at static ride height (zero bump)

0} rad/s angular speed

wR rad/s rocker angular velocity

Subscripts

D damper

K spring

m mass (point mass)

P pushrod

S suspension

W wheel

z static (zero) ride height

1 input

2 output

Chapter 15 — Computational Geometry in Three Dimensions

In some cases the units may vary. This depends on the type of problem being solved (e.g. a position
problem or a velocity diagram problem).

Variables are in italics, vectors are in bold italics, and magnitudes of vectors are in non-bold italics.

a, b, c
A, B, C
bl, b2

B
B
Clse - 5Cs
d
D
D
f

fufafs
i,j,k

L

I, m,n
LM, N

= =
=

£

<S®PEReDmTNT 2z
-

various various constant values

m position or displacement vector
m magnitude of A

m side lengths of triangle

rad angles in a triangle

various constant values

m position or displacement vector
m magnitude of B

various various constant values

various determinant value, divisor

m position or displacement vector
m magnitude of D

— position factor (e.g. on a line)
— position factors in a triangle
— unit vectors along (x, y, z)

m length

— direction cosines

— direction numbers

m vector normal to a plane
m magnitude of N
m constant in plane equation

various  vector cross product
various vector dot product, or cross product magnitude

m radius of circle or sphere
m displacement along a line
m local coordinate position
m/s velocity components

— unit vectors in local coordinates
m/s velocity vector
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14 m/s velocity magnitude

VN m/s velocity component normal to a plane
Vr m/s velocity component tangential
X, ¥, Z m coordinate position

Zup m height of horizontal plane
Greek

a, B,y rad direction angles

0 rad angle (e.g. between two vectors)
Q rad/s angular velocity

Chapter 16 — Programming Considerations

f — interpolation factor

l,m, n — direction cosines or numbers

p m a constant

u, v, w m coordinates

X, ¥,z m coordinates

Chapter 17 — Iteration

a — 1—r

a, b, c,d — Muller’s method coefficients

A — asymptotic error constant

C — a constant

dg — difference between successive changes
dx — a small change in x

D — simultaneous equation divisor

e — an error value

ex — error at Kth iteration

f — a function f (x)

f — first derivative of f

f — second derivative of f

g — f1/21"

m — gradient (e.g. numerical)

)4 — root multiplicity factor

P — order of convergence

r — sequential error ratio

R — remainder

w — iteration ‘acceleration’ factor

X — a variable

XITER — basic proposed new value by iteration
Xk — value of x after Kth iteration

y — a variable y(x)

z — possibly complex variable

Z1 B3y m height of lower ball joint

Zsp m suspension bump position
Greek

A — a change in a variable

1



Appendix B

Units

This book is, of course, in SI units throughout, but variations of Imperial (‘English’) units are still in
everyday engineering use in the USA, so the conversion factors in Table B.1 may be useful. Note that lbm
denotes pound mass, 1bf denotes pound force (the weight force that acts on one pound mass due to standard
gravity), kg denotes kilogram mass of course, whilst kgf denotes a ‘kilogram force’, the weight of 1 kg
mass in standard gravity. The kgf is sometimes denoted the kp, the kilopond, which is in common use in
Continental Europe. This must not be confused with the kip, a US unit of 1000 1b. The force units kgf and
kp are not true SI, in which forces are always in newtons. The pound mass is 0.453592370kg (exact by
definition).

In basic geometry, the only measures are those of length and angle. Even here, true world standardisa-
tion has not been achieved, with the inch (25.400 mm exactly by definition in the UK and US since the
1960s) still being used in the US. The international spelling of the length unit is metre, accepted in the UK
and the rest of the world except for the US and Germany, where it is spelt meter. In international English, a
meter is a measuring device. The number 25.4 is only moderately round, and one can look forward, once
the now only ‘US’ inch eventually dies out, to the introduction of a convenient and useful metric inch of
exactly 25 mm.

In the context of suspensions, the length unit of the decimetre is useful, denoted dm, this being exactly
0.1 m by definition, 100 mm and 10 cm, approximately 4 US inches. Coefficients such as linear bump steer
are conveniently expressed in degrees per decimetre (°/dm), with °/dm? for quadratic bump steer. One
decimetre is a realistic large displacement for a suspension, so in these units the relative magnitude of the
coefficients is significant.

In angular measure, the fundamental unit is the radian (about 57.29578 degrees, exactly 180/ degrees).
This angular unit is a great mystery to non-mathematicians, but makes a great deal of sense once one
appreciates its role in geometry and computation, or, indeed, in the relationship between engine torque and
energy per revolution, or power. Physically, it is the angle for which the arc length equals the radius. For
human consumption, the degree is generally preferred, or the complete revolution. In France, as an effect
of the political revolution of circa 1795, the gradian is often used, this being by definition one hundredth of
aright angle, being exactly 0.9 degrees. The sexagesimal base (the very ancient base 60) system of angular
measure, with 60 angular seconds in one angular minute and 60 angular minutes in one degree is still used
by astronomers, but in general science and engineering it is now common, and certainly easier, to use
decimal degrees.

The main angular conversions needed are therefore between radians and degrees, and some
computer languages provide this facility by intrinsic routines, e.g. rads(angdeg) and degs(angrad).

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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Table B.1 Conversion factors

Length (SI m, metre):

1 inch =0.025400 m (exact by definition)
1 foot =0.304800 m (exact)
1m=39.37008 inch (approximate)

Angle (SI rad, radian)

1 rad = 1/27 revolutions (exact)

1 rad = 180/% degrees (exact)

1 rad =57.29578 deg

1 deg=17.4533 mrad

1 rev =360.000 deg (exact)

1 rev =2x rad (exact)

1 grad = 1/400 rev (exact)

1 deg =60 min (angular minutes, exact)
1 min =60 sec (angular seconds, exact)

Mass (SI kg):

1Ibm = 0.453592370 kg (exact, definition)
1 kg =2.204622622 Ibm (approximate)

Basic usually has raD and DEG. Of course, these are only multiplications by the appropriate constant of

180/7 or w/180.

The correct use of capital letters in units is essential. Consider, for example, the possible errors in
incorrect use of kg, Kg, KG and kG, which would correctly mean kilogram, kelvin gram, kelvin gauss and
kilogauss, although the gauss is not SI.

1



Appendix C

Greek Alphabet

Lower case

Name Letter Main applications
alpha a slip angle

beta B attitude angle

gamma Y camber angle

delta 1) steer angles

epsilon € geometric coefficients
zeta 4 —

eta n compliance coefficients
theta 0 pitch angle, angles
iota L —

kappa K path curvature
lambda A angles, Langensperger angle
mu o —

nu v path angle

xi & —

omicron o —

pi b geometric constant
rho p density, angles

sigma o —

tau T path turn-in

upsilon v —

phi ¢ roll angles

chi X —

psi ] heading angle

omega ) angular velocity

(continued)

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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Upper case

[¢]
—
=
[¢]
-

Name
alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota
kappa
lambda
mu

nu

Xi
omicron
pi

rho
sigma
tau
upsilon
phi

chi

psi
omega

Main applications

inclination angle
non-small increments

mathematical summation

angles
angles
angular velocity

DEXNB/BNNMISOMZTAXR~OINDL Y= >
|

Many of the upper case letters are the same as the usual Latin alphabet of English, so do not arise in
mathematical symbols.

1



Appendix D

Quaternions for Engineers

D.1 Introduction

A quaternion is a group of four numbers (hence the name quat-), for example (a, b, ¢, d). Early work on
the properties of such four-number groups was done by Euler, but the real invention of quaternions was by
the prominent Irish mathematician Sir William R. Hamilton in 1843, who established the rotational
properties and the three imaginary numbers involved.

In particular, a quaternion is a scalar number a with a three-dimensional vector (b, ¢, d). There are
simple rules for addition, multiplication and so on. Quaternions can be used for efficient calculations of the
position of a rotated solid body in space, for example aircraft and space vehicles. Multiplication of
quaternions corresponds to successive rotations about possibly different axes, so they are intimately
related to the nature of three-dimensional space. This involves the use of three distinct square roots of —1,
S0 quaternions are an important generalisation of the usual two-dimensional complex numbers.

Quaternion addition and subtraction are simply performed term by term. Multiplication is more
complicated, being performed across all combinations of terms, with rules for the various vector products.
Division is by multiplication of a reciprocal.

The theory of quaternions was described by Hamilton as the theory of lines in space, and as the theory
of vector quotients. A quaternion converts one vector (line) into another by multiplication. Division and
reciprocation of quaternions is also required.

D.2 History

There is a saying that ‘Anything is more fun if you shouldn’t be doing it’. We are fascinated by the taboo.
The Catholic church used to have a long list of forbidden books, a list that became unofficial in the 1950s.
Many religious people would still never consider owning a book for fear of reprisals. There are religious
people who would destroy all books totally, perhaps short of the Bible in Latin. Haters of mathematics
have a special fear and loathing of complex numbers, and of quaternions in particular. These mathematical
devices are used, inter alia, to calculate rotations, which is the source of the fear.

Six hundred years ago, the official religious dogma was that the Earth was fixed, and was the centre of
the universe, and the world was largely a theocracy. Science showed that this was false — the Earth is in
orbit around the Sun (giving the year) and revolves on its own axis (the day), despite fierce opposition from
the church (persecution of Galileo: ‘It moves nonetheless’). The Earth has combined rotations. The Sun is
anon-special star in a non-special galaxy. This severely undermined claims that human beings are central
to the universe. Hence, the hatred of ‘rotations’. Also, the theocracy was threatened by Science, so there
was fear of ‘revolutions’, which would deny religious power, particularly a fear of combined revolutions.

Suspension Geometry and Computation J. C. Dixon
© 2009 John Wiley & Sons, Ltd
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The hatred of Science and books in some religions contrasts interestingly with the respect accorded to
these in others, such as Islam, Hinduism, Buddhism and, of course, by non-believers.

The application of quaternions to solid body rotation is alone enough to justify its inclusion in
undergraduate mechanics texts. Its absence therefrom, and the general dearth of material, is very
interesting itself. The suppression of quaternions has made them a cause célebre with the inevitable
attraction of the ‘forbidden’. Quaternions are also applied in subatomic physics. The correspondence
between the quaternion and four-dimensional space-time is itself fascinating.

In view of the above historical vignette, and bearing in mind the fact that the Spanish mathematician
Valmes was burned to death at the stake by the Inquisition for solving a quartic equation, let us, with a
frisson of fear and excitement, consider these dangerous quaternions, these ‘agents of revolution’. In
comparison with the apparent dramatic political importance attending them, the simple mathematical
reality is mundane indeed. It is hard to imagine anything more innocuous.

D.3 Position in Space

The general position of a body in three-dimensional space requires specification of one particular point of
the body, usually the centre of mass, in fixed coordinates (X, Y, Z), and the body’s angular position. The
rotational position is specified by rotations in a coordinate system centred at the body reference point.
Often the Euler angles are used, which are three successive rotations about, in turn, the vertical axis (giving
aheading angle), the body lateral axis (giving a pitch angle), and finally the body longitudinal axis (giving
a roll angle). However, Euler’s theorem of rotation states that any angular position of a body, however
actually reached, may be reached by a single rotation about some axis, generally inclined. This means that
the rotation can be given an axis-and-angle representation, with the axis defined by direction cosines. This
is a representation in terms of four numbers, these being one scalar, the angle 6, and a three-dimensional
axis vector: (6, /, m, n). Quaternions are not far from this, but modified for convenient calculation.

For an object with an initial position represented by a quaternion P, when it is rotated to a new position
that new position is given by P, =QP;0Q, that is, premultiplication by the conjugate Q€ and post-
multiplication by the quaternion Q.

D.4 Quaternion Representations

A quaternion is a four-part number, being one part scalar and one part three-dimensional vector. The vector
part is also known as the imaginary part. According to the job in hand, the best representation may vary. As
a four part number it is simply

Q = (a7 b7 C7 d)

If the vector is, as usual, directed in normal space, then the (X, y, z) axes have corresponding unit vectors
(1,j, k) and the quaternion is conveniently written as

Q = qo+axi + qyj + 4.k
The Euclidean length is
Lo=\/%+ @R +a+4

A unit quaternion, having a total Euclidean length of 1, may be written in terms of its unit direction
vector as
O =cos¢p+using

More generally, for a quaternion of length Ly,

0 = Lg(cos ¢ +irsin )
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D.5 Conjugates

The conjugate of a quaternion (like the usual diernion complex number) requires the negation of the vector
(imaginary) part, so for

Q= (a,b,c,d)
the conjugate is simply
QC = (a7 _b7 —¢ _d)

Some other useful conjugate relationships are

(A°)° =4
(A+B)° = A+ B°
(AB)® = B A

with a change of order occurring in the last equation. This last relationship is used in combined rotations.

D.6 Addition and Subtraction

Addition and subtraction of quaternions is simply performed by separate addition of the four component
parts.

D.7 Multiplication
Quaternion multiplication is associative, which means that
0,0,0; = (0,0,)0; = 0,(0,05)

so the rotated position quaternion P> = Q°P;Q can be calculated as (Q“P,)Q or as Q“(P,Q) with correct
results. Quaternion multiplication is also distributive, so

0,(0,+05)=0,0,+0,0;
The actual quaternion multiplication is performed term by term. In general,
P=p+pi+pj+pk=p+P,
Q=q+qi+qj+ak=q+0,
By reducing the products, such as ;} to k, and ;'2 to —1 (detailed later), and collecting terms, then R = PQ
may be expressed in its components as
R=r+ri+ ry}+ r,k
with
r = pq—(pxqx +Pyqy +P24:)
I'x = Pqx +4qPx + Pyqdz—Pz4y

Iy = Pqy + qpy—Pxqz + Dzqx
r, = pq, +4qp, +pqu_prX
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This may be expressed conveniently in terms of the scalar and vector parts as

PQ = (pq—Py-Q,)+pQ,+qPy+ P, x Q,

where the vector parts P, and Q, behave as conventional vectors, with a dot product on the left and a cross
product on the right. This type of quaternion product is known as the Grassman product. There are other
types of product, not relevant to rotations. The quaternion product is, then, effectively the cross product
minus the dot product.

The final vector cross product is the standard determinant

i j k . . .
P x Q = |Px Py Pz|— i(Py‘]z *quy) 7j(quz 7pqu) +k(]7qu 7[’)/%()
qx 4qy 94

The point position quaternion P, resulting from the calculation should be a true position quaternion, with
zero as its scalar part. This can be demonstrated to be algebraically correct, but may be numerically
imperfect.

To obtain the quaternion multiplication result requires consideration of multiplication of the component
parts with their direction unit vectors, which has a somewhat mysterious quality (see Table D.1), as with
planar complex numbers.

Table D.1 Multiplication tables

For ab use a in the left column and b in the top row. Pre- or postmultiplication by 1 always gives the same
vector.
Unit vectors, dot product

i j  k
i 10 0
j 0o 1 0
kK o o 1
Unit vectors, cross product
i j k
i 0 k-
j -k 0 i
kK j —i 0
Planar complex numbers
i
i -1
Quaternions
i j  k
i -1k
j o~k -1 i
Eoj - -1

This is the vector cross product minus the vector dot product. For quaternions, also note that

P=pP=k=ijk=-1

Bj=—ji=lk
k= —kj—i
i = ik =]
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Here, the mystery is that in considering the direction of the axis of rotation, and for the positions of
points, the i i ,j and k are taken to be unit vectors. However, in the multiplication table they behave as three
distinct square roots of minus one. The vector cross product i x iiszero, but, for quaternion multiplication
as for planar complex numbers, i i x iis —1. This means that the negated dot product appears in the scalar
part of the result quaternion. There are therefore three multiplication results for self-products of unit
vectors, the dot product 1, the vector cross product zero and the quaternion product —1. This applies to any
general unit vector, not just to axis-aligned unit vectors. S

The quaternion multiplication property that iT=-1 ] = —l and k& = —1 shows that a quaternion
is a generalised form of a complex number in which there are three distinct square roots of —1, namely 7, j
and k, about independent axes. This is directly related to the fact that in three-dimensional space there are
three independent rotations, that is, three ways to select a pair of the three axes for a rotation.

D.8 Reciprocals
The reciprocal or inverse of a quaternion is given by

QC

Q_l =7
LQ

where L is the Euclidean length of Q, defined earlier, with

00'=0"0=(1,0,0,0)

This is also the accepted method for obtaining the reciprocal of a complex number. In this special case
of the reciprocals the multiplication is commutative, Q0 ' =0 'Q.

D.9 Division

Quaternion division is, like multiplication, non-commutative, and is performed by multiplication by a
reciprocal. The expression

[4)

2=,

is ambiguous, and could mean

0=05 o 0=50

which will not, in general, have the same value. The correct one to use depends on the problem in hand.
The reciprocal may be found as shown earlier, so the quotient is either

o1 008
Q*Ql Q2 - L(2)2
or
1 &0
0 7&—L&
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D.10 Powers and Roots
Using the axis unit vector notation, the square of Q is
Q0 = L*(cos’*¢ + 2iisin ¢ cos ¢ + (—1)sin’¢p)

where @it = —1, showing how the quaternion self-multiplication of a unit vector must be &#* = —1 to give
the cos 2¢ = cos’p — sin’e:

0% = L*(cos 2¢p—sin 2¢ + it(2 sin ¢ cos )
= L*(cos 2¢ + i sin 2¢)

which is squaring of the length and doubling of the argument (angle), exactly as for a diernion complex
number, and correspondingly for the nth power:

Q" = L¥(cos N¢ + it sin N¢p)

Note that the direction of the axis vector # is unchanged.
Correspondingly, the square root of the quaternion Q is

VO = \/Z(cos ¢ +asin %d))
and correspondingly for the nth root:

{/0 = VL (cos(¢/N) + asin(¢/N))

However, multiplication is not conveniently achieved by this means because in general &; # #, (unlike
complex numbers).

D.11 Interpolation

In the simulation of solid body motions, as used in flight training simulators and computer games, it is
often desired to interpolate smoothly between two angular positions of a body, If these angular positions
are specified by @, and Q,, it is required to find the intermediate transform quaternion Q where

QQ1 = Q2
SO
0=0,0;"
_0.0f
0=

It is then easy to interpolate for intermediate positions by fractioning the angle of the quaternion Q.

D.12 Point Position Quaternions (Vector Quaternions)

For the purposes of basic physics and engineering, it is convenient to think in terms of two types of
quaternion. After the body reference point is specified, a local set of axes centred there is considered,
parallel to the main Earth-fixed axes. Any point in the body has a position in the local axes, represented by a
position vector and a corresponding local point position quaternion. The other particular type of
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quaternion is the rotation quaternion itself. These two types are just special cases. For a point position
vector in local axes (x, y, z) the corresponding point position quaternion is

P=(0,x,y,2)

All point position quaternions have a zero first part. This also illustrates how a quaternion is a combination
of a scalar part, the first number, and a three-dimensional vector part, the last three numbers, analogous to
time and space. Using the usual unit vectors i }', k, along axes X, y, and z, the point position quaternion
may be expressed as

P=0+xi+yj+zk

This use of a point position quaternion touches upon the use of homogeneous coordinates, which in three
dimensions are (4, X, y, z) or (X, y, z, a), where the extra member « is used to scale the basic point position
(x, y, z) to handle points at infinity without loss of direction.

D.13 Standard Rotation Quaternions

Consider now rotation by angle 6 (radians) with, for convenience, ¢ = 6/2, positive right-handed about an
axis through the origin defined by direction cosines (/, m, n). The corresponding standard rotation
quaternion is

0 = (cos ¢, Ising,msinp,nsin¢p)
also expressible in terms of unit vectors as
0 = cos ¢+ (Isin )i+ (msin)j+ (nsin )k

The vector part of the standard rotation quaternion points along the axis of rotation, and has a length of sin
¢ =sin(0/2).
The Euclidean length of a standard rotation quaternion is

Ly = \/(cos2¢> +sin’p (P +m* +n?)) = \/(cosz(b +sin’¢) = 1

This unit Euclidean length is a useful feature of a standard rotation quaternion, unlike a position
quaternion which can be any length but must have a zero first (scalar) part. Hence, the scalar part of a
standard rotation quaternion bulks up the Euclidean length to unity. This eliminates any scaling effect.

D.14 Angular Position

Given an initial position, then the angular position of a body at any other time may be represented by the
appropriate rotation quaternion from that reference state. This angular position quaternion is the product
of all the angular movement quaternions in the intervening time, taken in the correct sequence.

For a rotation through angle 6 =2¢, the rotation quaternion and its conjugate are

0O = (cos¢,/sind, msinp,nsin )
OF = (cos ¢, —Isin, —msin ¢, —nsin ¢)

which is the same as negating the angle.
When the rotation of the body about the axis occurs, any point P; with angular position quaternion P;
moves to position P,, with angular position quaternion

P, =0°P,Q
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giving the desired values for the new position. Because quaternion multiplication is not commutative, it is
essential that the premultiplication be by the conjugate, not the other way round. If they are reversed, it is
as if the angle were negated. This would be equivalent to rotating the coordinate system with the body
stationary, rather than moving the body itself.

In the above equation is a clue to the use of only half of the physical rotation angle in each quaternion. It
is useful to think that postmultiplication moves the body by half of the angle, but with some side effects.
Premultiplication by @ would move it in the other direction, so the angle is negated by using the conjugate.
The combination of pre- and postmultiplication eliminates the side effects, leaving only the required
angular movement.

The angular position calculation requires two quaternion multiplications. Multiplication of quaternions
is non-commutative, meaning that Q;Q, does not in general have the same value as @»Q;. This aspect of
some operators is well understood nowadays, but was highly ‘revolutionary’ in 1843. In effect it is a
mathematical consequence of the physical fact that two rotations about different axes have different final
results if done in a different order.

D.15 Reversed Axis

In three-dimensional geometry, if the direction of the rotation axis is reversed and the angle is negated then
the physical result of the rotation must be the same. For a quaternion, this is

0, =cos ¢ +usin ¢

0, = cos ¢+ (~u)sin(—¢)
= cos ¢ + (—u)(—sin ¢)
= cos ¢ +sin ¢

so the quaternion is the same, as it should be.

D.16 Special Rotation Cases

A rotation quaternion with a rotation angle of 90° has cos 45° and sin 45°, and does not look special.
At 180° rotation, it has cos 90° and sin 90°, and the scalar part becomes zero, Q being simply

Q = (07 17 m7 I’Z)
A rotation of —180°, which is 180° in the other direction, is
Q = (07 717 —m, 7")

which has the same final result.
A zero rotation, leaving the object in its original position, has cos 0° (=+1) and sin 0° (=0) with
rotation quaternion

Q: (1707070)

A complete 360° rotation, or —360°, leaving the object in its original position, has cos 180° (= —1) and
sine 180° (=0) with rotation quaternion

Q: (_1>0>07O)

If this is applied twice, 720° rotation, then the original position is achieved once again. The product of the
two 360° rotation quaternionsis (1, 0, 0, 0), the other rotation quaternion that leaves the body in its original
position.
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The need for two 360° rotations to restore the quaternion to its original state is significant. It has been
held to imply something about the nature of space-time, and is important in the description of some
subatomic particles which seem to have this same property.

D.17 Negation

If a rotation quaternion is fully negated, Q> = —Q, its effect is unchanged. Solving for the angle ¢ from
the quaternion components shows that it is changed by 180°. The actual rotation angle is changed by twice
that, 360°, a complete rotation, so the results are the same. This means that there are two quaternions
representing any one rotation. When a negative scalar part occurs, the entire quaternion may therefore be
negated, to produce a ‘reduced’ quaternion of the same rotational properties but with a positive scalar part.

D.18 Non-Unit Rotations

The foregoing explanation of rotation was couched in terms of standard rotation quaternions, also known
as unit quaternions, with Euclidean length 1. Strictly, this is not necessary. If P, is rotated by unit
quaternion Q to P, then

P, =0°P,Q

If Q is multiplied by a scalar constant A, then R = AQ does not have unit Euclidean length, and the above
equation no longer holds — a scaling with factor A? occurs. However, it is still correct that

P, =R 'P,R=(AQ) 'P,(AQ)

using premultiplication by the reciprocal instead of the conjugate. The factor A then increases the
intermediate product but this scaling is corrected by the second multiplication. The precalculation of R~
requires

RC
-1 _
e
R
In the special case of unit quaternions, with L= 1, R~' = RS, the reciprocal equals the conjugate, making

for a more efficient calculation. For this reason, rotations are, in practice, represented by normalised (unit)
quaternions.

D.19 Sequential Rotations

Two rotations in succession, @ and @, in that order, have a total result Q. Point position P; goes via @ into
P, and then via @, into point position P3 with quaternion Pj:

Py =05 (07P10))0,

The multiplication is associative, so

Py = (Q507)Pi(2,0,)

It is a property of the conjugates that

0507 =(0,0,)°
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with the order changing, so
Py =(0,0,)°P1(Q,0,)
and the total effect is given simply by

0=00

taken in the order in which they occur. This applies to any succession of rotations:

Q:Q1Q2"'QN

A long sequence of such calculations can introduce cumulative numerical errors. With a matrix
representation of rotation this can be difficult to correct, because the rotation matrix has a complex
relationship between its parts. A rotation quaternion is easily renormalised because the one specification to
be met by a standard rotation quaternion is that it have a Euclidean length of exactly 1, which is a helpful
feature in numerical work.

D.20 Relationship with Complex Numbers

In two dimensions, in the complex plane, rotation through an angle § may be performed by multiplying by
the complex number z = (cos # + isin #). In two dimensions, there is only one possible rotation, which is
an interchange between x and y without change of length. In three dimensions, three possible independent
rotations are possible. Considering axis-aligned rotations, these are exchanging x with y, y with z or z with
X, so a quaternion has three independent rotations, and so three roots of —1 for three-dimensional rotations
instead of the diernion complex number single root 7 for two-dimensional rotations.

In two-dimensional geometry, multiplying by i = \/ —11isa90° turn to the left, about the virtual z axis.
Two such turns, which is a multiplication by > = —1, gives a 180° turn, which is a full reversal (+ 1 into
—1). Another square root of —1 is —i. This is a 90° turn in the opposite direction, to the right. Two such
turns equals —180°, which is the same position as + 180°.

In complex numbers, rotation (e.g. multiplication) is supposed to be about a virtual axis perpendicular
to the plane (1, i), but uses equations for rotation about an 7 axis. However, in three dimensions, rotations
about the 7 axis are in the (j, k) plane. It happens that i X j=k and i X k = —j. In two dimensions, we use
ix 1 =iandix i=—1, which is two-dimensional complex numbers are really in the (j, k) plane, not the
(1, i) plane, but the renaming of j as 1 and k as i happens to work.

D.21 Infinitesimal Rotations

For an infinitesimal rotation, the angles 6 and ¢ themselves are infinitesimals and all higher orders such as
¢? can be neglected. Then sin ¢ =~ ¢ and cos ¢ ~ 1, so

0= (1,1, m¢,nd)

Table D.2 Comparison of i in two and three dimensions

2D 3D

(J, k) plane (1, i) plane
ixj=k ix1l=i
ixk=—j ixi=—1
P="1o p-lo

J 1
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Considering two such infinitesimal rotations, Q; and Q,, the total effect is Q@ =Q,Q, which, by
multiplying out and eliminating higher-order infinitesimals, gives

0= (lal(¢l + d’Z)vm(d)l + ¢2)7”(¢1 + ¢2))

which is why angular velocities, unlike angular positions, behave as simple vectors.

D.22 Vector Quaternions

For pure vector quaternions (zero scalar part)

0y10y; = —0y; - Oyy + Oy X Oy,
0v,0y; = —0y; - Oyy — Oy X Oy

where the first term is a scalar dot product, and the second is a vector.
Two vectors are perpendicular (orthogonal) if their dot product is zero. For pure vector quaternions
(zero scalar part) this can be expressed as

Oy1Qvs + Oy, Qv =0
If the cross product is zero then two vectors are parallel. For vector quaternions this is

Oy 10y, — O, 0y =0

Three vectors are coplanar in general if the cross product of any two is perpendicular to the third (zero dot
product). This is expressed by the vector triple product, for example

(V1% Va)- V3 =0 (coplanar)

Co-planarity of the vector part of complete quaternions is correspondingly specified as requiring
0;(0,0, - 0,0)) +(0,0, — ©,0,)Q; = 4Re(Q;Im(Q,0,)) =0

These conditions are useful for hand analytical work, but for numerical work, particularly in computers,
one works with the component parts anyway, so the vector conditions can be applied directly.

Another useful form of expression of a quaternion is in terms of the angle ¢ and a unit vector # along the
axis of rotation:

it = pii+pyj+p.k
giving

Q = L(cos ¢ +asin )

D.23 Finale

In mathematics, quaternions are an important part of basic complex number theory, generalising the
simple two-dimensional complex plane. In engineering, the single application of quaternions is in the
representation of physical body rotational position, particularly for aircraft and spacecraft. Euler angles
are good for human understanding of angular position. Matrices can do the calculations. However,
quaternions really are the theory of rotations, in a way that Euler angles and matrices are not, and they are
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computationally efficient whilst also avoiding the singularities of Euler angles. They have a valuable part
to play in mechanical engineering.

It is not known who said: ‘God created complex numbers, and his greatest work was quaternions.’ It is
rumoured that there is a mathematical proof of the existence of a god using quaternions, possibly due to W.
K. Clifford (1845-1879), since lost or destroyed. Newton may have worked on some foundations of this,
involving number quadruples, numerology and the tetragrammaton. Euler worked on quadruple numbers,
but apparently with no religious connection.
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Appendix E

Frenet, Serret and Darboux

In the analysis of a smooth line in space, the Frenet—Serret equations are important. They are described
briefly here as an introduction to path analysis, and to explain why they are not readily applied to the road
vehicle.

Considering a space curve which is smooth, that is, having a suitable number of continuous derivatives,
any point, P, with vector position P, may be chosen for scrutiny. The path length to this point from a
reference point on the curve is s. At this point the curve lies locally in a plane, the local plane of the curve.

The unit tangent vector to the curve,

_ap

T—=—
ds

is in the direction of the changing s, and lies in the local plane. The curvature of the path is k (lower
case Greek kappa). The particular unit normal vector N points towards the centre of curvature, and is
also in the local plane. Finally, the binormal unit vector B is perpendicular to the local plane, and is the
cross product

B=TxN

The three unit vectors (7', N, B) form a local right-handed coordinate system, useful for general path
analysis. The variations of these vectors with path length are given by

dr

—~ — kN

ds K

dN

— = —«kT+1B
ds

dB

— _ _IN

ds !

where « is the path curvature and 7 (lower case Greek tau) is here the curve torsion. The torsion is
effectively the rate at which the curve tries to move out of the local plane. The above are known as the
Frenet—Serret equations (after the French mathematicians J.F. Frenet and J.A. Serret, both active in
the mid-nineteenth century).

Suspension Geometry and Computation J. C. Dixon
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The plane of T and N is called the osculating plane. The plane of N and B is called the normal plane.
The plane of T and B is called the rectifying plane.

Additionally, the unit normal vector N is in the direction of the spatial rate of change of the tangent
vector, so

_dT/ds
" abs(dT/ds)

Also,

L _dT/ds _ dB/ds

N’ N

The Frenet—Serret axis system, moving with the point, has an angular velocity. Dividing this by the
(signed) point speed, that is, taking the derivative of the angular position of the axis system with respect to
the path position, gives the Darboux vector, @ (lower case Greek omega) which is given in value by

w=1T+«kB
giving

T'=wxT

N =wxN

B'=wxB

The lack of application of these pleasing equations to vehicles on roads is a result of the fact that the road
is not a single path, but has a lateral slope angle of great importance, that is, the road is a ribbon, and the
preferred coordinate system for vehicle analysis is always based on the local surface alignment of the
ribbon, not on the local plane of path curvature, although these systems coincide on a flat road.

/



Appendix F

The Fourier Transform

F.1 Introduction

The Fourier transform is a representation of a periodic waveform by harmonic components, the method
having been invented by the French engineer and mathematician, J.P. Fourier (1768-1830), for analysis of
heat flux and temperature distributions. The method has subsequently found wide application throughout
the sciences (Newland, 1984; IEEE, 1967).

There are various types of transform, varying in the exact job and the method. The main acronyms to
know are:

DFT discrete Fourier transform

EFT engineering Fourier transform
FFT fast Fourier transform

FT Fourier transform

IDFT inverse discrete Fourier transform
IFT inverse Fourier transform

MFT mathematical Fourier transform
SFT slow Fourier transform

The discrete Fourier transform is the discrete transform of a discrete data set sampled from a continuous
periodic wave. Naturally, this lends itself to digital computation.

The fast Fourier transform is an efficient method of calculation of a discrete Fourier transform. It is
clearly defined mathematically, and would appear to be simple to use. In practice there are some
difficulties, not least because there are several extant programs that give differing results. This needs to be
explained. The first FFT algorithm was by C.F. Gauss in 1805 (published posthumously in 1866).
Theoretical analysis followed by Runge and Koenig in 1924, and a good algorithm by Danielson and
Lanczos in 1942.

In practical application, Fourier analysis is the representation of a cyclic (periodic) waveform by a
series of sine and cosine terms of various frequencies which sum to the original wave. For a continuous
original wave, the number of transformed frequencies is infinite. For a discrete (sampled) original data set,
as normally used nowadays, the discrete Fourier transform gives a number of frequencies basically equal
to half the number of points, that is, N data points (where N is even) give N/2 frequencies. Each of these has
a sine and cosine component, the amplitudes of which are calculated by the transform. Actually N points
give a top frequency N/2. The first frequency is actually zero, so the number of frequencies is a total of
N/2 + 1. This is two too many coefficients to determine from the N points. Two of the coefficients are

Suspension Geometry and Computation J. C. Dixon
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always zero. For the first and last frequencies (0 and N/2) the coefficients of the sine terms are
indeterminate, and therefore considered to be zero, having no significance. The zero cosine term
corresponds to the mean value. Because the frequencies begin at zero, it is convenient to number the
frequency array from zero. In practical computation of the DFT, it is efficient to use a data length N equal
to 2 raised to an integer power, N = 2. Then a data array (1 : N) has N/2 frequencies numbered 0 to N/2.

For any one frequency, these two amplitudes can be combined into a total amplitude and a phase angle.
These amplitudes represent the spectral density. The wavelengths of the transform are given by the
original total wavelength of the data divided by successive integers. The frequencies are therefore in linear
progression.

The equations are well conditioned, although subtractive cancellation is a possible problem. Numerical
accuracy is generally good. To perform a Fourier transform is to solve the N simulataneous equations for
the coefficents. The advantage of the Fourier transform is that the waves are orthogonal, so the results can
be obtained much more efficiently than for normal simultaneous equations. The fast Fourier transform is
normally used, but if only a few frequencies are required then a slow transform is acceptable, and is also
useful for checking purposes. The transform can be inverted to recover the data from the spectral
distribution.

This sounds straightforward, but in practice there are complications. There are various programs
available from several books, giving different results, which can be very confusing. Also the method of use
varies.

F.2 Types of Fourier Transform

There are several variations on the basic FT theme, and these need to be understood for correct use of a
DFT. The various programs can be classified in the following ways:

(1) Mathematical transform or engineering transform. The mathematical transform is the underlying
process. The engineering transform does a little more work, and actually produces the sine and cosine
coefficients, including the zero frequency terms (including the mean) which are handled differently, or
starts with the sine and cosine coefficients and produces a data array.

(2) Dividing by N. If the bare mathematical process is applied, and then reapplied for an inverted
transform, the original data set is not recovered; instead the result is the original data set multiplied by
N.There is a variety of opinion on what to do about this. Some programs do nothing, some divide by N
at the forward transform stage, some divide by N at the inverse transform stage, and some make the
transform as symmetrical as possible by dividing by \/ N at both stages. To obtain agreement between
various published programs for the mathematical transform it is therefore often necessary to adjust the
output up or down by N or \/ N. In the engineering transform, the division must definitely be performed
exclusively in the forward direction to give the correct coefficients.

(3) Type of transform. There are two methods of transform, called Cooley—Tukey and Sande-Tukey, In
the FFT, there are two phases of operation. One is a bit rearrangement involving a two-deep loop. The
other is the basic transform itself involving a three-deep loop. In the Cooley—Tukey transform the bit
shifting is done first. In the Sande—Tukey transformation, the bit shifting is done last. Otherwise, they
seem to be considered equivalent, simply alternative methods that should produce the same results.

(4) Various published programs seem to give different numerical results when applied to a complex input.
If applied to a purely real input then they agree on the complex output. If applied to an imaginary input,
they have opposite signs for the complex output, which agrees in magnitude. If applied to a complex
input, they combine the complex parts to give not just sign disagreement but numerical value
disagreement. In some cases, it seems that the order of the coefficients is reversed. There is a unique
correct solution to the DFT of a given input data set, so there seems to be something amiss with some
published programs.

(5) Argument passing. In practical computation, the arguments are passed to subroutines in various
configurations. Programs for the mathematical transform usually take a complex argument, that is, an
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array of complex numbers (available as an intrinsic data type in Fortran). In languages without the
intrinsic complex data type, two real arrays may be passed, one with the real parts, one with the
imaginary parts, or a single pseudo-complex real array of alternating real and imaginary parts.

(6) Type of result. A basic engineering transform will typically accept a single real array argument and
return two arrays, the sine and cosine coefficients (or possibly the complete amplitude and phase
values). The MFT returns a complex array result.

(7) Number of input data sets. A good multiple EFT will transform simultaneously two valid independent
real inputs (which correspond to the real and imaginary parts of a complex input in an MFT), so a
suitable engineering transform can accept two independent real arrays and simultaneously produce
the two real transforms (two independent sets of sine and cosine coefficients) in an efficient manner.

(8) Inplace ornot. The transformation may be ‘in place’ or not, that is, the returned results may replace the
incoming argument array or be returned as separate output arrays. It is usual for an MFT to take a
complex argument and to transform it in place, whereas an EFT will usually take a data set and return
the transform in separate arrays without altering the data. The ‘in-place’ method was once a necessary
memory saver, less necessary nowadays unless the arrays are very large, and not really good practice.

(9) There is more than one type of FFT, and the speeds vary considerably. One claimed FFT was found by
the author to be a factor of 10 slower than the best program tried, although still faster than a slow
transform. Also, the SFT may be speeded up by various means, so there are SFT, fast SFT, slow FFT,
several varieties of FFT, and even very fast VFFT.

Considering the above alternative methods, configurations, argument passing conventions and per-
formances, the alternative Cooley—Tukey and Sande—Tukey transforms, and division by N or \/ N, or not,
the potential for confusion is apparent.

F.3 Engineering Fourier Transform

The EFT is firmly grounded in reality. The transform is between the data points in terms of definite
displacements from zero (e.g. the height of points along the road), and the amplitudes of the sine and
cosine waves that correspond to, and can recreate, the positions. There is no room for discussion about the
signs, or about whether or not to divide by N or \/ N at various stages. The forward transform produces the
circular function (sine and cosine) amplitudes from the displacements, and the reverse transform produces
the displacements from the amplitudes. There is no ambiguity. To an engineer, the forward transform is
going from the data to the harmonic analysis (sine and cosine coefficients), and an inverse transform is
going from the frequency spectrum coefficients to a displacement data set. Therefore, as may be required
in practice, when starting with a frequency spectrum and producing a displacement array, the first thing
that an engineer may do is an inverse transform.

F.4 Mathematical Fourier Transform

In contrast, the MFT is less clearly defined, particularly in terms of when to do any divisions by the data
length. Here there seems to be a conceptual problem. The MFT is not grounded in reality as is an EFT, so
the MFT is whatever it is defined to be, and there seems to be no obvious way to check it against reality
without further processing, that is, to change it into an EFT. This leaves room for varying definitions, and
introduces the possibility of confusion. The mathematical definition typically given is

N-1
H, = Z Iy exp S(i2nkn/N)
k=0

where Sisasignvalue, +1 or —1. Changing the sign of S changes the direction of the transform. A process
with one sign followed by a process with the opposite sign is said to recover the data, but this is not entirely



398 Suspension Geometry and Computation

true. An increase by a factor of N occurs, requiring a compensating division by N at some stage, but it is
difficult to say exactly where this happens and at what point the correction should be introduced.
Mathematicians simply call it a Fourier transform whichever way it is used first, and then an inverse
transform is going back the other way. This contrasts sharply with the engineer’s idea of forward and
inverse transforms, in which the data in the two forms have different physical meanings — for example, in
one case a series of point heights along a road, in the other a series of amplitudes of sines and cosine waves.

F.5 Mathematical Definitions

Press et al. (1992) give the forward transform definition as

N-1
H, =) hiexp(i2nkn/N)
k=0

where the data set is /(0 : N—1), with n, the index of the various frequencies, running from 0 to N/2. The
inverse transform is given as

e
e = N;H" exp (—i2nkn/N)

with a division by N clearly stated to be in the inverse transform only. The forward transform has no
negative sign in the exponent, which appears in the inverse transform only.
In contrast, Newland (1984) gives the formal definition of the ‘forward’ transform as

lN—l
X = erzo:x,.exp(—iZHkr/N); k=0,1,2,...,N—1

and the ‘reverse’ transform as

N-1
X, = ZX"' exp (2nkr/N); r=0,1,2,...,N—1
k=0

exhibiting not only a difference in when to divide by N, which now appears in the ‘forward’ transform only,
but also changing of the signs in the exponents, with the negative exponential sign now occurring in the
forward transform. In effect, then, the definitions of forward and reverse transforms have been
interchanged.

In Harris and Stocker (1998) the forward transform is expressed (with slightly changed notation) as

e .
fr= N Z cr exp(i2nkr/N)
k=0
agreeing with Press et al. There is no explicit statement of any reverse transform.

F.6 Equations

The data set is Y(J) with J =1 : N. The number N is preferably, for convenience and efficiency in an FFT, a
whole power of 2. In any case, the equations vary slightly for an odd number of points, so an even number
is assumed, even for the SFT. The independent variable X is equally spaced at AX. The first wavelength is
A= NAX. The notional point number N + 1 is the first point of the next wave, and has the same Y value as
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the first point of the data set, Y(N + 1) = Y(1). This can be used as a check in the regeneration of the
data. The independent variable for point J is X(J) = (J—1) x AX with the first point at X(1) = 0. The last
point is at X(N) = (N — 1) x AX. The first point of the next wave is at X(N) =N x AX.

The lowest frequency is zero. The top frequency is M = N/2. The total number of frequencies is
M+1=N/2+1. The data set (points J=1,..., N) is produced from the trigonometric function
coefficients by the slow inverse-transform equation

JK 2nJK 1
) + Sk sin< nN )} + ECM cos(nJ)

1 = 2n
Y(J) :ECOJr Z {CK cos(
k=1

Here it is apparent that the first and last frequencies (K =0 and K =M = N/2) have no sine term (no Sk
coefficient).
To obtain the trigonometric coefficients from the data, the slow forward-transform equations are

2 Y 2nJK
cK:ﬁZY(J)cos( ”N >; K=0,1,...,N/2
J=1

N

pl _(2nJK
SK:—JZ;Y(J)sm( v ); K=1,2,...,N/2—1

where J is the data index and K is the frequency index. For the sine coefficients, it is apparent here that
for K =0 the sine argument would be zero, so the value of Sy is zero. For K = N/2, the sine argument is
a multiple of 7 and would give Sy =0.

Considering the complex coefficient

Zg = Cg +iSk

then the transform into trigonometric coefficients may be expressed as

2 X 21 JK 2nJK
Zx = — Y(J){cos( )+isin( )}
N; N N

P 2n JK
:NZY(J)exp( v ); K=0,1,....N/2

The fact that the product JK occurs with integer values ranging from 1 to N and from O to N/2
respectively gives an integer product range from O to N*/2. This makes possible a more efficient
calculation of the slow transform, by precalculating the necessary sine and cosine values — an FSFT.
Also, the slow transform may often be applied for a limited frequency range, or for a limited number of
frequencies that are of interest. The FFT of necessity does all frequencies, many of which may not be of
much engineering interest. The practical speed gain of the FFT, whilst very valuable, is therefore a little
exaggerated.

Comparing the equations here, for the SFT, with the earlier definitions for the MFT, it is apparent that the
SFT has an additional factor 2, and divides by N in the forward direction.

F.7 Published Programs

The FORK program is an MFT by V. Herbert (1962) (pre-dating Cooley and Tukey (1965), who were,
however, the first to publish in recent times), modified by Brenner, and further modified and published by
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Claerbout (1975). It works correctly in all respects. It divides by \/N in both directions, so it is
symmetrical, and it has a direction switch argument to provide forward and reverse transforms. It has
bit reversal first (Cooley—Tukey).

The MFT program Fourl in Press et al. (1992) is stated to based on ‘a program by Brenner’. It does not
do a division in either direction. It produces the correct signs. There is a direction switch. Bit reversal is
first (Cooley—Tukey). With adjustment for the division, it is in good agreement with FORK.

The MFT program in Newland (1984) has no switch, being intended for forward transforms only.
It includes division by N. An appendix explains how to reverse it, including, inter alia, removal of the
division. Bit reversal is first. The signs for the imaginary part of the argument appear to be wrong, so it
works for the real part only. Newland has a usefully different way of handling some of the details.

The MFT program in Harris and Stocker (1998) is in pseudo code. It is easily expressed in Fortran. It is
stated to be Sande—Tukey, and does indeed have the bit reversals last. It accepts two real argument arrays,
but apparently produces the wrong signs for the second one, so the output appears correct only for a single
real array. It is intended for forward transforms only, and there is no explanation about how to reverse it.

Barrett and Mackay (1987) provide a program in Basic which they describe as based on the ‘successive
doubling’ method. This converts readily to Fortran, but seems relatively slow (by FFT standards) and
works for a single real array only, giving incorrect signs for the second input array.

Various other published programs have been investigated with a view to use, but have generally been
found wanting in one way or another. Typically they are either incorrect or very slow by good FFT
standards.

F.8 Dividing by N

For the MFT, it is desirable for successive forward and reverse transforms (or vice versa) to recover the
original data, which end up multiplied by N in the bare process, so a compensating division by N should
occur somewhere around the two-way cycle. For symmetry, this can be a division by \/ N in each process.
However, it is more efficient to do a single division at one stage.

For the EFT, the forward transform requires a division by N to obtain the correct coefficients. If the MFT
in use does a division by \/ N then the EFT must do a further division, which is not ideal. For the reverse
transform, no overall division is needed, so if the MFT does a division then the EFT wrapper must do a
compensating multiplication.

Therefore, for efficient operation of the EFT, it is better if the MFT in use does no N or \/ N division at all,
or does the division by N in the forward transform only. Because the EFT has an additional factor of 2 to
deal with anyway, the most efficient computation is achieved if the factoring is left entirely to the EFT
stage, with no divisions in the basic MFT.

The best solution, then, is probably to have an underlying service routine that does no divisions. The
MFT will use this and add its own divisions by \/ N in both directions, keeping it symmetrical and
providing reversibility. The EFT will also use the underlying routine, and can do so in its own way
efficiently.

F.9 Sign Discrepancies

When the data are placed in the imaginary part of the complex argument of an MFT, or if two data sets are
processed simultaneously, or if the transform of a complex data set is required, there is disagreement on the
results from the various published programs (not just those listed above). If only one real data set is used,
placed in the real part of the complex argument of the MFT, there is agreement on the result. The fact that
the programs agree in this simple case has increased the confusion. When the MFT is used in the service of
an EFT, as it generally is for practical applications, the sine and cosine amplitudes are deduced from the
complex coefficients found by the MFT. This process involves taking the symmetric and antisymmetric
aspects of the output, adding and subtracting corresponding terms in various ways. With the output from an
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MEFT that has faulty signs, the error can be corrected by changing (fiddling) the signs used in the additional
EFT processing. Therefore the final result of the EFT may still be correct, because of compensating errors.
This seems to have disguised the fact that there is inconsistency in the output of published MFT programs.
However, two wrongs do not make a right, and it seems that some of the published MFT programs must be
incorrect in their signs. If two programs differ in the magnitude or sign of their output, one of them must be
wrong, unless there is ambiguity in the definition of the FT.

F.10 Speed

There are significant differences in the speed of various FFTs. There are some slow ones around that are a
factor of 10 worse (successive doubling method) than a good standard one. There are various ways to
improve the performance of even a good one, for example by using a base-4 transform, which can be 20%
faster than a conventional FFT, promotion of unnecessary calculations out of inner loops, careful
organisation of exit conditions or use of determinate loops. When only one real array is to be processed,
it may be expected that it would run faster than a double array (or complex array) because the zero
imaginary parts will process more rapidly, but this seems to be a small effect in practice. A further
improvement may still be possible by using a folded single array in a complex half-length array; see the
Press et al routine ‘realft’.

F.11 Equation Check Program

The following program is purely for checking the FT equations for consistency.

! TEST DFT EQUATIONS

Program Test_FT_Eqgns
Implicit none
Integer J,K,KD,KF,N,ND,NF,M, IT
Real*8 d(1024),dr(1024),de (1024),a(0:512),b(0:512) ,RandH
Real*8 pi,s,sa,sb, t,er
IT=0
Print*
Print*,’Numerical check of DFT equations by slow FT:’
Print*
pi=acos (-1d0)
ND=1024
Print ’ (A,IO)’,’ ND="',ND
Do KD=1,ND
d (KD)=RandH ()
enddo

If(IT>0)Print*,’Start analysis:’
NF=ND/2
Do KF=1,NF-1

sa=0

sb=0
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Do KD=1,ND
t=(2*pi*KF*KD) /ND
sa=sa+d (KD) *cos (t)
sb=sb+d (KD) *sin (t)
enddo
a (KF)=2*sa/ND
b (KF)=2*sb/ND
If(IT>0.and.NF<9)Print*,KF,a (KF),b (KF)
enddo
! Extra cosine terms:
a(0)=2*sum(d) /ND
sa=0
Do KD=1,ND
sa=sa+d (KD) *cos (KD*p1i)
enddo
a (NF)=2*sa/ND

If(IT>0)Pause 'Start data recovery:’
Do KD=1,ND
s=0
Do KF=1,NF-1
t=(2*pi*KF*KD) /ND
s=s+a (KF) *cos (t) +b (KF) *sin (t)
end do
dr (KD)=a (0) /2 + s + a (NF) /2*cos (pi*KD)
enddo
er=sum (abs (d-dr) )
Print ' (A,ES9.2)’,’ Checksum="',er
Print*
Pause "RTF:’
End
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After the page number, a letter e means a significant equation, f means a figure, p means an example
program fragment or program output, and t means a table.

Acceleration, angular 58e Anti-dive, etc 13, 190f, 191t
diagrams 297 etc, design 193
diagrams, in 3D 350 Anti-roll, coefficient 164e
iteration factor 344 Antisymmetry 71
normal 5Sle Arm, see also Single arm, Double arm
Accelerometer, zero 63 angled 230f
Accuracy, lost 326 double see Double arm
of program 330 length, and angles 229f
Ackermann 2, 3, 13, 16, 112, 118, 244 length, difference 232f, 233e
angle 101f length, equal 230ft
factor 103, 104ef, 105f, 106e, 108e semi-trailing 207f
steering arms  107ef semi-trailing, low pivot 209
ACOS, bad argument 326 semi-transverse, 215f, 216t
Adams 343, 357, 403 semi-transverse, low pivot 216
Aitken’s acceleration 345e single see Single arm
Alfa Romeo T-bar 21f transverse 210-212ft
Aliasing 77 transverse, sloped axis 212f, 213t
Angle, Basic function 70 transverse, sloped axis,
bump camber 144e elimination of bump force 213e,
bump caster 194e 214f
camber 119e, 144ft Arms, converging 231lef
caster 118e, 193e, 199¢ double, see Double arm
compliance 182f parallel trailing 14f
inclination 118f, 144ft ASIN, bad argument 326
path etc  57ef Assembly problem 332-334fp
phase 70f Aston Martin  14f
pitch  190e Atan2, Fortran function 70
roll steer 134e Attitude angle, kinematic 102ef
steer 127e Audi, undriven rear axle 25f
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Index

Axle, see also Rigid axle
bending 1
camber 150e
four-link 21f
inclination and camber 145

roll 92f

roll inclination angle 147e, 148e
steer 132

steer, angles 131, 132¢

tramp 20

tweaking 156

Bairstow 352, 353e
Banking 51f, 71, 72
Barrett 402

Bastow 10, 404

Belgian pavé 44
Bennett, suspension 37f
Benz 3, 5,99, 107, 108f
Bibliography 404
Bicycle, model 100
Binary search 338
Binormal 393

Block (sliding) axle location 160f
Blunder 330

BMW Of, 20f
Bolaski  39f, 403
Bolleé 2,3

Bounce 88

Broulhiet 13
sliding pillar  12f

Buick 11

Bump, 88
and roll, non-linear 149
camber 145ef
camber angle 144e
double 88
double, symmetrical on GRC
from roll 147ef
isolated 67t
rectangular 74
scrub 153
scrub rate 153
scrub, single arm  224f, 225ef
shape 67t, 68f
single, symmetrical on GRC
steer, see also coefficient
steer 7, 10
steer, axle linear 134
steer, dimensions 129t

165, 166ef

167ef

steer, graph  131f
steer, models 196
steer, non-linear 134e
suspension 83

Cadillac, independent front (1934) 11f
Camber, see also Axle, Inclination, Wheel

angle 119e, 144t
bump 145ef
static 147e

wheel 143

wheel and road 146f

Camber Nectar 42f

Campbell 404

Car turn-in 59

Cart steering  2f

Caster, angle 118ef, 193e, 199¢
centrifugal 119

Cauchy 350, 352

Cebon 44, 63, 403

Chapman strut  29f, 30f

Checksum 334p

Chevrolet 11

Circle, in 3D  308e

Circular motion 56e

Citroén, undriven rear axle 26f

Claerbout 400, 402

Coefficient, aligning moment compliance

steer 185

anti-dive, etc  191t, 192t
anti-lift  191t, 192e
anti-rise  191t, 192¢
anti-roll  164e
anti-squat  191t, 193e
axle roll, camber 144t
axle roll, from bump 148e
axle roll, inclination 153e
axle roll, steer 132e, 133e
bump camber 144t, 152¢, 195
bump camber, converging arms
bump caster 118, 194e
bump kingpin caster 195
bump kingpin inclination 196
bump scrub 153
bump scrub rate 153, 195
bump scrub rate variation 154ef, 195
bump steer 128e, 130e, 195
bump to/from roll/toe 135e
double arm, bump camber 285e, 286e
double bump steer 136e

232e
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kingpin caster 222e

kingpin inclination 222e

lateral force compliance camber 185
lateral force compliance steer 185
overturning moment compliance camber
rigid axle, heave pitch 260e

rigid axle, understeer 259f

roll camber 152

roll inclination 144t

roll scrub 156e

roll steer 134e, 135¢

roll toe 135e

scrub rate, lateral, longitudinal, 223e
scrub rate, locked wheel 223e

steer camber 119¢

steer caster 124e

steer inclination 124e

steer jacking 125e

strut, bump camber 246et, 249, 288e
strut, bump caster 246et

strut, bump scrub  246et

Coefficients, different arm lengths 233e

double arm lateral 227

double arm longitudinal 227
double arm, bump camber 236et
double arm, bump caster 241let
double arm, bump scrub X 241et
double arm, bump scrub Y 236et
double arm, lateral 236et
parallel level arms 230t

rigid axle, 256t

semi-trailing arm  208e, 209t
trailing arm  201t, 202e, 203et, 205t
trailing arm, sloped axis 206t
transverse arm  212t, 213t, 216t

Coherence, track 80, 81f
Compliance, see also Steering 88

angles 182f
experimental 188

hub centre forces 186
inclination angle 185e
matrix 183e, 184

ride 184e

rigid axle steer 187
steer angle 186e, 187
steer coefficient 186e
steer gradient 185, 186e
steer, control of 179
steering 187

Compound crank axle, see Trailing twist axle

Conditioning, bad 328e

Contact patch, angle subtended 85e
areca 83
length 70, 85e

Conte 347, 357, 403

Convergence, accelerated 344-346e
cubic 338
failure 326
linear 337e¢
of iteration 337
per evaluation 338
quadratic 338

Conversion factors 378t

Cooley 399, 400

Coordinate system, wheel, ISO  180f
wheel, SAE  180f

Coordinates, cylindrical 299
non-rectangular 299
transformation  300e

Cornering, force, zero banking 52e
test, rough 74

Cosine rule 304ef

Cosines, direction 300e

Cottin-Desgouttes  10f, 26

Crossland 298, 403

Curvature angle, wheelbase 5Sle
normal 50e
path 48t 49f

Danielson 395

Darboux 393

Darwin 3

Data out of range 326

Data sensitivity problem 329e, 330ep

Data trend, effect 75, 76f
removal 76

De Boor 347, 357, 403

De Dion 23f, 24f, 133, 156

Decimetre 377

Delta-squared process 346e

Derivative of a quotient 168

Design process, double arm 236

DFT 75, 395

Direction cosines 300e
pivot axis, 198f, 199e, 199t
wheel axis 116et

Direction numbers 300e

Discomfort, passenger 96e
tyre 96e

Displacement v. length 300
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Index

Divergence, of iteration 339
Division by zero 326
Dixon 138, 141, 159, 178, 188, 403
dm 377
Double A-arm, see Double arm
Double arm, angle relationships 235et
configurations 228f
design process 236
examples 16-18
Ford 29f
general solution 233, 234eft
lateral coefficients 236et
longitudinal 240ef, 241et
numerical 2D solution 237, 238ft, 239t
numerical 3D solution 242t
suspension 227
Double lateral arm, see Double arm
Double trailing arms 250, 251 etf
Double transverse arm, see Double arm
Double wishbone, see Double arm
Double-bump steer 136e
Drechsel 37f, 403
Driveshaft, plunge 10f
Droop 83
strap 21f
Dubonnet 10, 12f, 13, 227
Duquesne 81, 82, 404
Durstine 100, 125, 403
Dynamic index 133

Ease of use 332
Edgeworth 3

EFT 395

Electrostatic analogy 352
Elliptics 3

Equivalent link, accuracy 260
leaf spring 140
Error block 327p

ratio, iteration 339
relative 337

Exit, iterative 340

Failed to converge 326
Failure Modes Analysis 326
Fairthorpe TX-1 37f
FFT 75,395
Fiat 9f
leaf spring 20f
leaf spring with coils 21f
traction bar  20f

Five-link axle 31f, 251

Flannery 357, 402

, 404

Foot, see perpendicular

Force, hub centre
see also Wrench

tractive, equivalent system

186

Ford 29f, 226, 403

Capri 7
four-link 21f
strut rear 33f

FORK program 399, 400

Fourier 395
analysis 75e
build-up 76f

transform  395-402e
transform, download URL 402

FRC 162-164
Frenet 393

Frequencies, successive 76f

Frequency 69e
dividing 46
spatial 69e

FT 395

Galileo 381
Garwick’s device
Gauss 395
Gaussian rms 96
Glas Isar 15f
Gordon-Armstrong
GRC 164-165
Gyro precession 7
Gyros 63

Halley’s iteration
Hamilton 381
Hamy 37f, 403
Harris 398, 400, 4
Haversine curve 6

343

14f

349e

02
Tfe

Heading angle 57ef

Heave 83, 88, 89f

steer, vehicle 137¢

Heldt 125, 403
Herbert 399
Hillman, swing arm
Hotchkiss 140
axle 20
Howard 404
Hub centre forces
Hurley 36f, 403

15f

186

186e
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Ideal rack position 244
IDFT 395
IE (IERR) values 326
IEEE, real number 331
IFT 395
Inclination, see also Camber
angle 118f, 144ft
axle roll  149e
roll, from bump camber 148e
wheel 143
Inclinometer 63
Installation ratio, see Motion ratio 271
Intersection, 2 spheres and horizontal plane  319e
3 planes 319-320e
3 spheres 316-318e
line and plane 320e
Iteration 335
see also Convergence
accelerated 344-346e
accelerated fixed-point 356t
adaptive speed factor 344e
Aitken 345e
Bairstow 353e
bracketing 341
Cauchy 350e
comparison of methods 355-356t
convergence 337
correction factor C  350e
delta-squared process 346e
endogenous 343
exit 340-341p
exit condition 342
exogenous 343
factor 339, 344
fixed-point 343, 356t
group g 350
Halley 349e
high order 351 et
high order, no derivatives 346
Laguerre 252e, 351
Lin 353e
linear 340et
linear, problems 339
Madsen 352
Muller 347-348e
multiple root 349e, 352
Newton 348e
Newton with 3D-VD 356t
Newton’s second 349e
Newton-Raphson 348e

Olver 2350e

Parlett’s criterion 352
phase detection 342, 343
regula falsi 347
relaxation factor 344
Schroder 349

secant 346f, 347¢e, 356t
see also convergence
solution of axle 261
speed factor 344
staircase  342f
Steffensen 345e

three phases 336 ef

Jacking, link 162e

spring 91
steer 124
Jaguar 16f

Jeandupeux 40f, 403
Jeantaud diagram 106
Jenkins 343, 352, 357, 403
Jerk 56e

Katz 392, 403

Kermis 81, 82, 404
Kilopond 377

Kingpin axis, see Steer Axis
Koenig 395

KRC 160-162

K-squared rig 10

L’Obeissante 2f
La Mancelle 3f, 107, 108f
Laguerre 338, 351, 352
Lancia, Lambda 13
semi-trailing arm  28f
sliding pillar 13
strut rear 33f
transaxle 28f
undriven rear axle 26f
Lanczos 395
Langensperger 2f, 3
angle 103e, 104, 105f
Lapidus 357, 403
Leaf springs, equivalent link
Leap, away from root 339
Length v. displacement 300
Lift bar 133
Lin 352, 353e
Line 305

140
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Line, parametric form 305e, 306e
rotation about a second line, 217
see also Intersection
standard form 305e

Link jacking force 162e

Load transfer, factor 164e
longitudinal, 189

LOG, bad argument 326

Logger analysis 61-63

London taxi 104

Lunar Rover 104

Mackay 402
MacPherson 403

strut  18f
Macrostructure, road 77
Madsen 352, 357, 403
Maserati, leaf spring 6
Matra Simca, trailing arms  28f

Matrix, steering compliance 183e, 184

Matschinsky 404

Mercedes Benz 5f, 9f, 16f, 17f, 271, 31f

GP 1908, 5f
low pivot swing axle 27f
multilink  31f
MFT 395
Microstructure, road 77f
Milliken 405
MIRA 44, 403
Morrison 298, 403
Motion ratio 271, 272 et, 273e
displacement method 274
displacement test 275
effect on damping 293, 294e
effect on inertia 290, 291e
effect on stiffness 292e, 293et
pushrod, pullrod 288
rocker 276
spring 284e
velocity diagram method
Muller 347, 348, 357, 404
Muller’s method 347-348e
Multilink axle, 31f, 251
Multiplier, ideal iteration 339

Nemeth 109, 125, 404

Newland 44, 63, 395, 398, 400, 402
Newton 343, 348, 352
Newton-Raphson iteration 348e
Noise, white, pink 80

Norbye 405
Number, real, representation 330

Offtracking 10le
zero 103
Oldsmobile 11
Olley 10, 405
Olver 350
Opel, de Dion axle 23f
independent 12f
rear axle 22f
strut  19f
trailing twist  34f, 35f
Open University Course T235 298,
404
Optimisation, program speed 331
Orthogonal vector 218
Oscillation, of iteration 339
Ostrowski  349e, 357, 404
Oversteer, side force 26

Panhard rod 22f, 25f, 139
Panhard-Levassor 100
Parallelogram linkage 113f
Parametric representation 45
Parlett’s criterion 352-353
Parsons  39f, 404
Passenger, on seat 88, 89f
Path, see also Road, Track

analysis  53-55

angle 48t, 54ef, 57ef

antisymmetrical 71e

curvature 48t 49f, 54e, 393

length 45

profile, building 80

radius change 58e

turn-in  54e, 59¢

two-track, phase angle 72f
Pellerin 41f, 404
Perch (point above triangle) 315
Period, of oscillation 69¢e
Perpendicular, onto 3-point plane

315e

onto a line 309e, 310e

onto a triangle 313e

onto normal-form plane 314e
Phase angle 70f

two-track 72f
Phillippe  40f, 404
Pink noise 80
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Pitch 83,90
geometry 189
steer, vehicle 137e
Pitman arm 11f, 112
Pivot axis, direction cosines 198f, 199e, 199t
single-arm suspension 196, 197f
Plane, general form 306e
intercept form 306e
normal (N&B) 394
normal form 306e
normal form, from 3 points
osculating 394
radical 308e
rectifying 394
through 3 points  306e
Plunge, driveshaft 10f
Point, see also Intersection, Velocity
above a triangle 315, 316ef
in 3 planes 319-320e
in a triangle 310e, 311ef, 312¢

313e

intersection of 3 spheres 316-318e
of line and plane 320e
specification 305

Polynomial, roots 351-356etp

Pontiac 11

Porsche, ‘917" suspension 86
Weissach axle 30f

Position v. length 300

Pound, mass as kg 377

PRCC, suspension 41f

Precision, 8-byte number 337
quad 331

Press 352, 357, 398, 402, 404

Pro-dive 13

PSD 78

Pseudo-force, normal 5Sle

Pullrod, motion ratio 288

Pushrod, motion ratio 288

Pythagoras, in 3D 299

Quadratic, solution 348
Quarter-car model 88
Quaternions 381-392

cf complex numbers 390

Rack, helix angle 113

Radian 377

Radical plane, of spheres 308e

Radius, see also tyre, wheel
cornering  100ef

loaded 84, 94e, 119
of curvature 48, 49f
rolling 119

rolling, effective 84

tyre 84
unloaded 84
Rall 349, 357, 404

Ramp, haversine 66f
isolated 65, 66tf
linear 66f
Raphson 348
RASER value 325
Real number, representation 331, 337, 338
References, collected 403
Reliability, of program 327p
Renault, offset torsion bar 32f
swing axle 27f
trailing arms  32f, 34f
undriven rear axle 24f
Ride analysis, frequency domain 96
time domain 95
Ride, height 92
meter (Olley) 10
position 88, 89ef
Rigid arm, velocity ratio 283e
Rigid axle 253, 254f
coefficients 256t
compliance 187
example results 264-270
examples 266f, 268f
leaf with steering 140, 141f
link analysis 258ef
location 138
numerical 3D solution 260
pivot point roll steer analysis
points defined 260
roll centre 256e
roll, steer pitch angles
steered 7f
velocity diagram  289f, 290f
with leaf springs 140
Rigid-arm suspension, see Single arm
Rim dimensions 85
Rising-rate factor 276, 280e, 281e
RMS of Gausssian 96
Road, see also Path, Track
angle geometry 47f
banking 51f
building, IFT  76f
camber curvature 52f

257e

255ef
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Index

Road, see also Path, Track (Continued)
camber twist 45
centreline elevation 7le
contour maps 44f
cross-section  59-61
curvatures 48e, 49¢
geometric properties 46t
geometry 43-63
gradient 46e
grading 79
ISO profile  78e, 791, 80t
local angles 46, 47f
longitudinal gradient 50f
pitch curvature 50f
power spectral density, 78ef, 79f, 80t
profile classification 65
quality 79
ride displacement 90e
sinusoidal  69ef, 71
stochastic 77, 96
torsion 6le, 73e
Robson 81, 82, 404
Rocker 276
configuration 277f, 278f
deviation angle 279
included angle 281e
motion ratio 276, 279, 281e
Roll 83, 90e, 92f
Roll centre, asymmetrical vehicle
174£, 175e
axle 138
experimental 177
force 162-164
force, height 164e
four types 157
geometric  164-165
geometric, example values 173
geometric, height 168e, 169¢
geometric, in double bump  170ef
geometric, in road coordinates 175, 176ef
geometric, in roll  171ef, 172e, 173e
geometric, in roll, fixed 172e
geometric, latac  177e
geometric, lateral position 168e, 169¢
geometric, movement 165-177
geometric, table of equations 174
height, double arm, 286e
height, strut 288e
independents  159f
kinematic 160, 161f

rigid axle 256e
types defined 158
Roll, gradient 9le
oversteer, effect 133
Roll steer, see also Coefficient
10, 132
axle 139e
coefficient, axle 132e, 133e
load effect 139e
non-linear 134e
vehicle 136e
Roll, understeer 132
body 91, 92f
Rolls Royce 10
Root cluster 349e
multiplicity 349e, 352
Roots, of polynomial 351-356etp
Rotation, one line about another, 217
Rover, de Dion axle 24f
torque tube 22f
Watt’s linkage 22f
Runge 395

Saab, undriven rear axle 25f
SAE,J 670e 404
Sande 400
Schroder 349, 357, 404
Scrub, see also Bump Scrub
double bump 156
roll 156e
Search, binary 338
Semi-trailing arm  28f, 29f
first 28f
Sensitivity matrix 262e, 263e, 264
Series expansion, cosine 196
sine 196, 337

Serret 393
Sexagesimal base 377
SFT 75, 395

Shackle (leaf-spring) 6f
Shimmy 7, 11

Shoup 335, 357, 404

Side-force oversteer 26

Simca, trailing arms = 32f

Sine and cosine combination 70e, 71f

Sine rule 303ef

Single arm, suspension, 195, 216-217f
bump scrub  224f, 225ef
comparison of solutions 218, 219t
displacement analysis 217
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general numerical solution 216, 217f
pivot axis 196, 197f
steered 222, 223f
static analysis 217
variables 198t
Sliding block 20, 160f
Sloan 10, 404
Solution, none, 326
Spectral analysis, road, 77t, 78f
Speed, of program 331
of travel, resonant 70e
Sphere, 307e
Spheres, intersection of two 307e
radical plane 308e
Spiegel 156, 404
Spring, coil 5
elliptic leaf 3
jacking 91
leaf 3, 4f, 51, of, 7f, 8
semi-elliptic 4
wind up 10
SQRT, bad argument 326
Staircase, numerical 342f
Steer angle 127e
difference 104e
kinematic  100f
reference 112e
Steer axis 118f, 120ef, 121et, 122et,
123et
steered angles 123e
Steer, compliance, coefficient 186e
compliance angle 186e
jacking 124
variables 128t
Steering see also Ackermann, Compliance
3D solution 243, 244f
Ackermann 2f, 3f

arm 7f, 8f, 11f
box 8f

box arm 8f
bus 109f

cam 2f

cart 2f

centreline 118, 119
centrepoint 118
compliance 179
connecting rod  11f
drag link 7f

drag link arm  7f
early history 1

efficiency 112
gear arm 7f
kingpin 8f
knuckle 11f
knuckle pin  7f
Langensperger 2f
Pitman arm 11f
precision 112
ratio 111, 112e
tierod 7f, 11f
tierod end 11f
tiller 99, 100f
transverse drag link 8f
transverse link  8f
van and truck 8f, 112, 113f
wheel, Benz 3, 99
Steffensen iteration 345
Step, in road 67
Sternberg 404
Stiffness, pitch  189e, 190e
Stochastic road 77
Stocker 398, 400, 402
Strap, droop 21f
Structure, compliance 88
Strut and arm suspension, see Strut
Strut, 2D lateral solution 246et
analysis in 2D 244
Chapman 29f, 30f
comparison of 2D analytic and
numerical 248t
design process 248
Ford rear 33f
geometry 245f
Lancia rear 33f
MacPherson 18f
numerical in 2D 247ft, 248et
numerical in 3D 249t
Opel 19f
steering  19f
steering, high 19f
steering, ideal 130f
suspension  18-20
velocity diagram 245f
VW 19f
Stub axle 8f
Surface, isotropic  44f
Surge 83
Suspension, bump 88
Suspensions, unusual 35
Sway 83
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Swing arm 150, 151ef, 158 Turning, dynamic  103f

constructions  159f kinematic 102f

length 151f Tyre, see also Radius, Wheel

radius 151f and rim dimensions 85f

transverse 15f deflection 84, 86, 87f, 94e
Swing axle, MB low pivot 27f section, development 87f

Renault 27f shape 84
Swing centre  145f, 150f tread, curvature 88f

movement 151e

Unit vector, third orthogonal 218

T235 298 URL, for Fourier Transform download 402
T-bar 21f

Terminology, SAE J670e 404
Test track, high speed 52
rough road cornering 74
Teukolsky 357, 402, 404
Tie-rod geometry error 104e
Tiller steering 99, 100f
Toe angle, static 138
Torque tube 22f
Torsion, body 90, 91e
Torsion, of line 393
of road 73e, 9le
Track change, in roll 156
Track rod errors  129ef, 130e, 244
Track, coherence 80, 81f
phase difference 82e
see also Road, Path
Traction bars 20f
Trailer, single axle 111f

Trailing arm, coefficients 201t, 202e, 203et, 205t

geometry 202f

Renault 32f, 34f

Simca 32f

sloped axis, 205f
Trailing twist axle 34f, 35f
Tramp, axle 20
Transformation of coordinates 300e
Transverse arm, 210f, 211f, 212t
Traub 343, 352, 357, 403
Trebron DRC, suspension 38f
Triangle, holding a point 311ef, 312¢
Tripod (3 spheres) problem 316-318e
Truck, three rear axles 111f

two front axles 109f

two rear axles 110f
Tukey 399, 400
Turn-in  54e, 59¢
Turning geometry 104f

trucks 108-111

Valmes 382
Vauxhall, leaf spring 6f
Vector, cross product 302e, 303e
Darboux 394
dot product 301e
third, orthogonal 218
Vehicle, heave steer 137e
pitch steer 137e
roll steer 136e
Velocity, end of 3 rods 321e
point above triangle 322ef, 323e
point in triangle 321e
Velocity diagram, double arm  284f
in 3D 295, 350
motion ratio 274
rigid axle, 289f, 290f
strut, 287f
Verschoore 79, 81, 82, 404
Vetterling 357, 402, 404
Volkswagen, see VW
VW 14
double wishbones 18f
strut  19f

Walker 42f, 404

Wallis 348

Wallis’ equation 343e

Watt’s linkage 22f, 260
longitudinal 25f, 289f

Wave 69f
road 69f

Wavelength 69e, 77t

Weiss 41f, 404

Weissach axle 30f

Wheel, see also Radius, Tyre

Wheel axis, direction cosines 115¢e
geometry 200

Wheel, bottom point 116, 117ef
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Wheel, forces, ISO  180f
SAE 180f
notation 92, 93f
pairs, slip 110f
shapes, basic  85f
spin axis 113, 114f, 115e
Wheelbase, unequal 32f
White noise 80
Whitehead 404
Wishbones, see also Double arm
double 15-18
double, crossed 15f

double, Jaguar 16f
double, Mercedes Benz 17f
double, Renault 17f
double, short arm  16f
double, VW  18f
Workspace 97
Wrench, on wheel, as six components,
181f

Yaw 83
acceleration 58e
angle 5S7ef
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