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PREFACE

This text is based on a compiling work written under the same title in 1996. Thus, it
might look a bit old fashioned. But as | am still regularly reading two journals on tires,
namely Tire Science and Technology and Tire Technology International, | see that old
motives preserve their repeated appearing practically unchanged. That is why | decided
to trandlate the work and update it in view of the present stage of my knowledge.

Fast development of electronics, computers, numerical methods and all the complex
structure of contemporary science has produced immense packets of specialized
knowledge in every technical branch. The mathematical point of view, very often
underestimated in the past, has finally found its place also in many areas traditionally
considered for purely empirical ones. Tire production and exploitation is one of them.
Today mathematical modeling is taken as a necessary part of inventing and designing
every new rubber product and a tool to enhancing the quality and efficiency of
production processes, accelerating development cycles, removing expensive tests on
prototypes etc.

The following chapters offer a short look at the tire structure and illustrate
nonlinearities in behavior of basic tire materias. The role of the compressed air filling is
emphasized by evaluating its prevailing contribution to total energy accumulated in tire.
Then the problem of loading the tire structure with the internal air pressure is solved
under the assumption that the energy accumulated in tire wall is neglected. This
assumption enables setting up the so called belt model and solving simple cases of tire
loading in analytical form within avery short time, i.e. instantly from the practical point
of view. The belt model may serve in many application areas like rolling resistance, tire
uniformity etc.

The text may seem to be sometimes too concise. But all the needed mathematics with
sufficient details could be found in Courses on this website (www.koutny-math.com).
| take it as a shapeable material and may be some supplementary sections could be
added in the future.

There are al'so more comprehensive works at hand today like

Mechanics of Pneumatic Tires edited by S. K. Clark or

The Pneumatic Tires edited by A. N. Gent and J. D. Walter.
It isjust and fair to remind also Russian authors (Biderman, Bukhin and many others)
who significantly contributed to the theory of pneumatic tires as well.

| would like to apologize for my imperfectness, numerous mistakes, bad formulations
and many linguistic trespasses.

F. Koutny
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1 INTRODUCTION

The mathematician is characterized not by computing but
by his clear thinking and his ability to omit irrelevant
things.

Rosza Péter

1 INTRODUCTION

Various vehicles such as cars and trucks in the first place, tractors, agricultural and
forestry machinery etc. as well as aircrafts and jets belong to inevitable technical means
of the present time. It is clear that the wheels of high performance vehicles cannot be
built somehow by blind trials but modern construction means are needed in their design
and development.

Computers and robots are attributes of technological development almost in all
branches of human activities in the last decade. Outputs of projecting works are
completely automated and transferred to CNC machines. Laser optics and CCD cameras
are used in optical control, computer tomography creates spatial view of the internal
structure of goods etc. So mathematical methods have found a fertile soil aso in many
areas where they were completely ignored afew years ago.

Though the pneumatic tire was invented and patented already in 1845 (Thomson)
and reinvented in 1888 (Dunlop) [1] the first theoretical works concerning its
construction appeared only in 1950ies (Hofferberth) [2]. The theory, however, was too
complicated (integration of a function with a singularity) and its practical applications
were conditioned by use of computers that were then only in napkins. In decades 1970
and 1980 graphica-numerica methods were used also and to make their application
easier special nomographs were published [3-7]. At that time aso analog computers
were used to obtain the meridian curve of the tire. But with mass applications of digital
computers, especially PC’s, those methods declined very quickly. Developments of
electronics and numerical methods have had a strong influence aso in various branches
of rubber industry (machinery, automating technology, construction, testing).

Here the basic knowledge concerning the construction and properties of tires will be
discussed. It is obvious that the pneumatic tire as a real object must be represented in a
very simplified way if the corresponding mathematical models are to be successful in
search for answers to properly formulated questions.

Theoretical results of any model need to be compared with the experimental ones
whenever possible. As arule, sooner or later experimenta facts are discovered that do
not agree with the theoretical predictions. Then the model must be adapted, if possible,
or abandoned completely and substituted by a better model. This process is repeated
again and again and the spira-like development is a characteristic feature of generd
recognition (see Prelude to Probability ... on this website).
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1 INTRODUCTION

Experiment is a basic element of natural and technical sciences. Its reproducibility
and repeatability assures the objectivity of science. This feature of experimental work is
closely connected to applications of statistical methods.

[ ]

But let us turn to the object of pneumatic tire again. Radial tire |ettering is a sequence

of figures and letters with the following meaning:

Outer width (mm) / aspect ratio + (Speed category) R + Rim diameter (inch) + Tread pattern.

Tirewall consists of three main components (Figure 1.1):
approximately homogeneous and isotropic outer rubber layers of the sidewall
and tread with patterned grooves needed for transmission of forces and
momentsin the interface tire/road,
reinforced parts (carcass, belt, beads) of cord/rubber composites carrying main
part of stresses produced by the internal air overpressure and external dynamic
loads between rim and road,
homogeneous layer of innerliner rubber material with small diffusion
coefficient to preserve the inner overpressure in thetire cavity.

This complicated structure is very uncomfortable to describe mathematically.
Moreover, there are very large differences in physica characteristics of individual tire
layers, significant dependence of rubber behavior (and also of some cords behavior) on
temperature, general nonlinearity in stress/strain relation and hysteresis. Also strains
that cannot be considered small and tire geometry, though approximated by an
axisymmetric body as usual, do not belong to ssimplifying facts.

tread

__ belt plies

' sidewall

Figure 1.1 — A schematic picture of the cross-section of a radial tire.
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1 INTRODUCTION

The equilibrium shape theory, strength and tire building calculations take into
account the load/deflection curves of corresponding reinforcing cords, wires etc. Rubber
Is considered just as a sealing and completely deformable material. But in calculations
of tire reactions to the externa loads the deflection of tread must be considered too.
Therefore, aso basic stress-strain behavior of rubber needs to be somehow described.

Traffic safety requires that the tire as a pressure vessel retains its integrity during its
whole service life. But its components are exposed to cyclic loadings so their strength
drops necessarily. Study of the fatigue behavior of individual tire components in
exploitation is expensive, because strengths measurement means total destruction of the
tire. E.g. acquiring the bead strength drop after traveling a fixed distance would need a
burst test of tire with pressurized water. Preserving the materia strength above a given
level needs to know something on how it depends on stress-strain conditions and what
the working conditions of tire are like. A qualified estimate of deflection of the traveling
tire is the first step to it. Conditions in regular exploitation, however, are a mixture of
deterministic and stochastic components. Therefore, redistic ssimulation of the cord
loading is very difficult in laboratory. The carcass cord in running tire is periodically
unloaded and bent during its passing the contact area. So estimates of the upper and
lower levels of the cord tension and deflection would be very useful to describe the
fatigue regime. This, however, needs a suitable tire model.

Systemizing experimental data can help to reveal some relations (or structures) that
in some cases may be explicitly expressed in mathematical form. Mathematical models
enable prediction and theoretical results can be confronted with experimental datain the
experimentally feasible domains. On the other hand, theoretical results can transcend
the possibilities of experiments.

A system of ideas, hypothesis or theory can be considered scientific in the sense of
K. Popper only if it includes the possibility of its falsifiability, e.g. by experimental
disprovability. Asfar as the horizon of the investigation is broad enough while the area
of knowledge is small several concurrent theories may exist contemporarily. The
subjective standpoint may be influenced by the temporary philosophy, ideological
fashion, social or political boosts or constrictions etc.

[ J

The Greek word “pneuma’ means the air, which emphasizes etymologically the role
of the compressed air in the pneumatic tire. The German “Luftreifen” is the verbatim
equivaent of the pneumatic tire.

The behavior of the system (tire wall/air) is controlled by the principle of minimum
energy. The today so popular finite element method (FEM) finds this minimum via
numerical solution of large systems of equations corresponding to individual elements
and their constrictions. Neglecting the tire wall energy, however, simplifies the problem
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1 INTRODUCTION

substantially. This can lead to a relatively simple and analytically solvable problem,
whose solution can be obtained very fast by numerical methods.

Direct measuring the inflation pressure increase in two car tires during their radial
loading in laboratory by mercury manometer [12] provided a justification for such a
neglecting. Rhyne' s regression formulafor radia stiffness[13] transformed for Sl units,

K,= 2.68 p-/WD +33.1
(p istheinflation pressure in MPa, W and D are the width and diameter of tire in mm),
was verified in severa large tire groups and confirms the overwhelming role of the
compressed air in the pneumatic tire. It gives the ratio of the radia stiffness (N/mm) of
aflat tire (p = 0) and the radia stiffness of the same inflated tire
331
2.68 p-/WD +33.1

As mentioned above, those ideas create a basis of the belt model of radia tire that
enables to predict its externa behavior, i.e. load/deflection curves in radial, lateral,
circumferentia directions quite good. It can also be used to predict average stresses in
supporting elements inside the tire structure. Nevertheless, computing local stress peaks
or determining stresses and strains maps need finer means (FEA).

In the tread/road interface local strains are influenced by the macroscopic and
microscopic bumps and asperities on the road surface. Corresponding stresses may
exceed the critical level of material strength. Then microscopic particles are torn out of
the surface. This destructive process is manifested as the tread wear. Wear rate depends
on tread rubber compound, road surface quality, interface temperature etc.

Assaid in Preface this text is a commented summary on author’s former publications
in different journals. Its main goa is to show that relatively simple methods and means
can still be useful in such a large application area like the geometry, technology and
mechanics of pneumatic tires.
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2 TIREMATERIALS

2 TIREMATERIALS

Properties of macromolecular materials for tire production belong in the area of physics
of polymers [14]. However, there is a substantial difference in response of rea tire
compounds and the ideal elastomer considered in the kinetic theory of rubber elasticity.
For example, the ideal materia is stiffening with increasing temperature while the
real tire rubber compounds become softer. To illustrate the complexity of real tire

materials several examples are presented below.

2.1 Rubber

Force,

20

10

0

T
Cycle 1 23°C
/1
70°C
A4 150°C —
]
1.6
Elongation ratio |
T
Cycle 5
23°C
//70°C
/ 7 J150°C
///
-
-~
”~
///
vy
7~
1 H H
1.0 1.2 14 1.6

Elongation ratio |

Figure 2.1 — Hysteresis loops of the vulcanization bladder rubber in the first and fifth strain cycle.
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2 TIREMATERIALS

Figure 2.1 demonstrates complexity of stress strain behavior in rubber. There are
shown hysteretic loops of test pieces prepared of bladder rubber at different
temperatures in the first and the fifth strain cycles. It is surely difficult to clarify what
could be meant under the Y oung modulus in such a case and why.

The information value of the Young modulus is low for the mgority of the people
who develop rubber compounds. On the other hand the evaluation criterions used by
those people cannot be used in the regular physical description of rubber.

To compute tangentia forces in radia tire the shear modulus of tread compound is
needed. This, however, is not measured as a rule. To determine the shear stiffness of
rubber, the device shown in Figure 2.2 was made. It enabled to record the tensile force
F(X) at displacement x of jaws by INSTRON TTCM machine [15]. Though the torque
F(X).R represents an average of shear stresses the linear elasticity gives proportionality
between the shear modulus G and the ratio F(x)/x. However, tensile force F(x) showed
nonlinearity, which implies variability of G with x and the shear angle (Figure 2.3).

Both the dynamic (oscillation) and static torsion tests with standard shear test pieces

were carried out.
-upper INSTRON jaws

removable
flywheel ulley with strin
F(X) pulley g
A

jaws jaws

rubber
cylinder

lower INSTRON jaws

Figure 2.2 — A device for rubber torsion testing either statically on INSTRON TTCM (the distance
between horizontal axis and vertical tension axisisthe pulley radius) or dynamically by flywheel.
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2 TIREMATERIALS

0

0 50 100
X, mm

Figure 2.3 — Nonlinear relationship between the displacement of INSTRON jaws and force.

In some parts of the tire the pressure stress is dominant, e.g. in tread. Therefore, also
pressure tests were performed on cylindrical test pieces cut out either of laboratory
rubber plates[16] or directly from treads of tires[17].

Stress/strain characteristics were taken in the 3" or 5" strain cycle. To illustrate the
dependence on temperature (°C) pressure moduli are shown at different temperatures. In
tread compounds an exponential drop with the absolute temperature was ascertained
(Figure 2.4). But these approximations cannot be used for extrapolations (e.g. at
temperatures lower than 10°C the materials become stiffer than predicted).

g E=1.45exp(476/(273+T))
= 7
L a -
E A .
= 6 \\ A
kS
®
S A ®
1) e e
(@]
c 5 g
S 2
> E=1.25exp(478/(273+T)) %\ik\A
s | ‘ |

Temperature T, °C

Figure 2.4 — Young's pressure modulus decrease in truck tire treads with increasing temperature;
e Michelin, D Semperit.

In hysteresis a similar decrease may be observed. Figure 2.5 shows the drop of
hysteresis with increasing temperature in rubber matrix of belt cord layer. Hysteresis
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losses were calculated directly from force/displacement records of INSTRON 6025. But
the resilience measurement by L Upke method proved to be easier and more acceptable
due to lower variance.

D
o

[m]
[m]

\3\ H=10.79 exp(488.6/(273+T))

al
o

N
o

100 - Elasticity Lupke,H, %

w
o

0 50 100 150
Temperature T, °C

Figure 2.5 — Hysteresis decrease with increasing temperature in belt rubber matrix of a truck tire.

The displayed regression function would reach the level of H = 100% at T » -53°C,
i.e. approximately at the glass transition temperature of the rubber. With this
temperature the regression functions from Figure 2.4 would be transferred to

49.55 52.95
Evicnain(T) = 385 exp " Esampert(T) =322 0xp " -
Those formulas a so adequately fit the experimental data and are acceptable in a broader

range of temperature.

25

Stress s, N/mm

0.5 1

1 1.2 1.4 1.6 1.8 2
Elongation ratio |

Figure 2.6 — Hysteresis loops of rubberized steel cord strip of 50mm width before tire building.
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2 TIREMATERIALS

It might be convenient to realize that the tire building technology is based on small
stiffness and large plasticity of raw rubber compounds. The plasticity is manifested by
large area of the hysteresis|oop as shown in Figure 2.6.

2.2 Cords

Considerable nonlinearity in dependence of tension and corresponding elongation can
be seen in al textile cords, high elongation steel cords and other kinds of cords. Figure
2.7 shows hysteresis loops of cords produced of four different materials. The upper limit
of load is 20N. In the initial part of load curve the cord filaments are rearranged, ordered
and cord structure is tightened. Elasticity of primary filaments causes a puff up of cord
structure. They must be rearranged first (the cord is compacted and its outer diameter
reduced) and then they start to carry their parts of the total load. This can be seen very
clearly in Kevlar cord, where this process requires the strain of about one percent.

Tensile force, N

20T 1 2 3 4

10

Diameter, mm
Y 1-KEVLAR 167/1x3 0.85
2-RAYON 184/1x2 0.70
3-NyLoN 188/1x2 0.76
4 - POLYESTHER 110/1x2 0.57

"1.00 1.01 1.02 1.03
Elongation ratio, |
Figure 2.7 — Loading and unloading curves of different textile cords.

Cord properties are depending on temperature — similarly as the rubber properties.
This can be seen very explicitly in nylon and polyester cords. If temperature increases
the nylon fiber shrinks like a strained rubber strip. But the shrinkage in nylon is much
less and, moreover, the nylon cord yielding increases at higher temperatures as shown in
Figure 2.8 [18]. So the often proclaimed contracting effect of nylon cap layer seems
improbable. The positive effect should be assigned more probably to creating a
transition layer and blurring this way the steep stress change between stiff steel cord
belt layers and soft tread rubber. Simple measurement showed that the increment of
circumferential length due to the same change of inflation pressure was greater in
heated up radia tire than in the same cold tire. The plasticity of nylon cords at higher
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temperatures a so reduces problems arisen possibly due to high circumferential stiffness
when the tire expands into vul canization mold.

60

| | 23°C
50 +—{NYLON 188/1x2 |

40

V.
/ 150°C
30 »

20 // i 7 /
//

Tension force, N

10 /
; 4k
0 2 4 6 8
Strain, %

Figure 2.8 — Influence of temperature on tension stiffness of nylon cord.

Time dependence of nylon cord strain e(t) at a constant tension load (creep) can be
described in asimple engineering form
e(t)=alnt+b,

where parameters a, b depend on the cord load, temperature etc. For example, in the
nylon cord from Figure 2.8 the tension of 27.5N and the time in minutes gave

exs(t) =0.010Int + 0.040 for the temperature T = 23°C,

eoo(t) =0.001 Int + 0.065 for the temperature T = 100°C.
For more details see [18].

r
Specia devices are needed in experimental work with steel cords. E.g. a properly

dimensioned tensile testing machine is required for establishing the strength of a stedl
cord. Clamping the cord in jaws must also be solved satisfactorily to obtain undistorted
results.

Figure 2.9 shows tensile curves in several steel cords. They are practically linear up
to 1% strain at least. The high-elongation (HE) cord appears very soft at small values of
elongation and all the displacement in the tensile force direction is consumed on spatial
packing the primary fibers. Only then the fibers are forced to elongate in the cord axis
direction with a much greater stiffness. The strength of cord fiber steel is significantly
higher than that in common steels of similar composition due to technology of drawing
the rod.

Though the hysteresis in steel cords is considerable it is difficult to record precisely
the unloading curve with common tensile testing machine. Our attempts to find out a
suitable and simple method for measuring hysteresis of steel cord were unsuccessful.
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The stedl still represents one of the materials with a very high strength. But the
strength of the common spider web fiber is aso very high a much lower specific
weight. Obviously, the mere existence of such materials is a provocative challenge for
development of materials with similar strength/mass ratio.

2500

2000

[y
(o))
o
o

1000

Tensile force, N

500

1 1.002 1.004 1.006 1.008 1.01
Elongation ratio |

Figure 2.9 — Tensile curves of several steel cords.

1 - BEKAERT 7x4x0.22+1 (D =1.81mm) and 3+9+15x0.22+1 (D =1.62mm)
2 - BEKAERT 3x0.20+6x0.38 (D =1.19mm),

3 - ZDB 3x0.15+6x0.27 (D =0.85mm),

4 - BEKAERT HE 3x7x0.22 (D =1.51mm).

2.3 Cord Strain and Energy Distributionin Tire

Tire wall occupies just a relatively small part of the total volume limited by the outer
surfaces of the tire and the rim. The prevailing part of the total tire volume, tire cavity,
is filled with almost ideally elastic medium — the compressed air (or other gas, e.g.
neutral nitrogen). The air overpressure produces strains in the tire wall corresponding to
its structure and stress/strain parameters of materias. It is well known that the
dimensional changes in radial tires are smaller that those in diagona tires due to the
orientation of tough cords close to the direction of main components of stress.

To show different behavior of the compressed air and cords let us consider a simple
system shown in Figure 2.10. It consists of sealed cylinder with a piston of a negligible
mass. The initial distance of the piston from the bottom be h, its area be A. Let p, =
98kPa denote the usual atmospheric pressure and initial pressure under the piston. If the
piston is loaded via a piece of the elastic cord then the pressure under the piston
increases. The isotherm compression is characterized by constant product pV, i.e. a
displacement x of the piston changes the pressure to p(x) = pa h/(h—x), 0<x<h due to
Boyle law. The overpressure in the lower part of cylinder p(X) — pa = pa(h/(h—x) —1) =
Pa X/(h—X) produces the pressure force on the piston
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piston

| cord

Al .,
A
L

Figure 2.10 — A simple model to
illustrate the energies stored in
cord and compressed air.

F(X) = A pa X/(h—X).

If | is the initia length of the cord section, DI its
change due to a force F and k the cord elasticity
constant,

F»kD,
then the same force F(x) results in the cord elongation
Di(x) » F(X)/k. The work accumulated in the cord is
Weord(x) » (K/2) DI*(X) = (k/2) (F(X)/K)?

= (A pa X/(h-x))/(2K)
and the work accumulated in the compressed air in
cylinder is
X X X
Wair(X) == F(¥) dx=-Apa dx =
h-
0 0
X
. X- h+h é h
A —  _dx =Ap,; 2x- hin -
paoo h- X pa h- XH
Thus the quotient
A2p2x2
Weorg (X 2k(h- x)?
Q(X) — Wcord((x)) — ( ) = -
ar Ap, (X- hInh )
AP, x° _

2K (h- %)2(x- hlnhh )

Ap, - (x/h)?

2kh (1- x/h)2(In(L- x/h)+x/h)
Obvioudly, Q(0) = Ap,/(kh) and Q(X) ® +¥ asx® h-0.
Limited cord strength and elongation at brake keep Q(x)
near Q(0) if values of I/h are not extremely great.

r

The next example is more difficult. The corresponding theory will be explained later
in Chapter 4 and computer programs are needed to make the calculation of considered

guantities easier.

Let us consider the carcass of aradia tire now, e.g. that of 445/65R22.5 tire, and suppose its beads
absolutely stiff. Carcass equator radius in that tire is 544.0mm and the volume enclosed by the carcass
inner surface is 0.230012m®. The carcass cord tension due to the inflation pressure 900kPa is 331N. If the
belt were removed, the carcass would expand radially as shown in Figure 2.11. The assumption of
inextensible carcass cord would result into free carcass equator radius of 623.0mm and the increased
volume 0.263122m°. This, however, would reduce the overpressure to
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p = (998%0.230012/0.263122 — 98) = 774kPa,
while the cord tension would increase to 579N. Let carcass cord be the steel cord 1 from Figure 2.9. The
elongation ratio corresponding to the load 579N is | = 1.003. For the initial carcass cord length
814.18mm the tension difference 579 — 331 = 248N would produce an increased cord length I; =
815.0mm, a new equator radius of 623.33mm and volume V; = 0.263654m".
The total energy of the compressed air contained in the cavity of the free carcass at the isothermal
expansion is defined by the volume V, annulling the overpressure 774kPa, i.e. reducing the absolute air

774+ 98 3
pressure from (774 + 98)kPa = 872kPato 98kPa, V, = T Vi =2.343331m°,

872
W, = 872 000 x 0.263654 In 08 =502.534kJ.

The energy stored in the carcass corresponds to the energy spent on the volume decrement due to the
cord length reduction, I = I/l = 815.0/1.003 = 812.56mm. The volume V(l.) = 0.262008m°. Thus,

Weorgs = 872 000 x 0.263654 x In % = 1.440kJ.
0.262008

500 -

450 -

400 -

-300 -200 -100 0 100 200 300

Figure 2.11 — Carcass meridian of the 445/65R22.5 tire.

These simple estimates show that the tire wall contribution to the total energy
accumulated in the inflated tire must be expected very small.

In real tire, however, the bead wire is extensible as much as the steel cords at least.
Also the bead is rotated by some angle due to the tension stress in the carcass cord layer
winded around the bead wire bundle (Figure 1.1). Thus, the real meridian length
increments in the area beyond the rim shoulders due to inflation pressure are much
greater than those we have taken into account so far.
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Figure 2.12 shows how the energy accumulated in the tire carcass is increasing with
an elastic increase of cord length.

=
o

s

O /
c

©6 ~

g /

I, o

//
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0 2

4 6 8 10
Carcass cord elongation, %

Figure 2.12 — Theratio of elastic carcass meridian elongation energy and the air energy of tire.

If the tire were filled with water, i.e. practically incompressible medium, the energy
accumulated in the pressure medium would be negligible and the dominant role would
belong to the elastic energy of tire wall [19]. That can be seen in tire burst tests. If the
tire wall were inextensible the pressure in tire would drop instantly after an opening has
arisen. But in real tire a stream of water is driven out by the relaxing wall materials

through the arisen opening with a high kinetic energy. So safety measures are necessary
to prevent destructive effects of that water stream.

P
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3 DIAGONAL CARCASS GEOMETRY

The reinforcing cord system plays a fundamental role in shaping the tire. In diagona
carcass the cord plies are laid so that the cords in one ply cross over the cords in the
neighboring ply under the opposite angle regarding the circumferential direction. In this
way the cords shape diagonals in curvilinear quadruples generated by meridians and
parallels on the axisymmetric surface. A single cord trgjectory in cross-ply tireisthen a
spatial curve on that surface of revolution as shown in Figure 3.1. It arises from a helix
on the building drum by its radial expansion while reducing the axial distance of beads
contemporarily.

B,
Carcass on -
X, building drum y

A

Expanded carcass

I
it

Figure 3.1 — Cord path in a diagonal tire and the schematic of diagonal carcass expansion after its
building.

F. KOUTNY: GEOMETRY AND MECHANICSOF PNEUMATIC TIRES



-16 -

3 DIAGONAL CARCASS GEOMETRY

3.1 Cord Trajectory in Tire Carcass
To describe the cord trgectory it is necessary to introduce a convenient coordinate
system. Because atire, in asimplified view, can be considered as an axisymmetric body
with a further symmetry with respect to the equator plane it is natural to choose the
intersection point of the axis of revolution xz and the equator plane for the center O of
Cartesian coordinate system Oxixoxs. This enables to define cylindrical coordinates
r,f,z asfollows
xu(r, f,2) =rcosf,
Xo(r,f,2=rsinf, y (3.1)
x3(r,f,2 =z b
The sguare of length element dl = Tdx(r, f, 27 on the surface of revolution in
Cartesian and cylindrical coordinates (. denotes the scalar product, [9,10])
di?=dx.dx = dx? +dx3 +dx3
=(dr cosf —r sinf df)?+ (dr sinf +r cosf df )? + dZ
=dr?+r’df 2+ dZ . (3.2)
As well known the equality r = const. defines aparallel and f = const. a meridian curve
on the surface of revolution [9] which can be described as the graph of a function
Z(r, f). The parallels and meridian curves generate together orthogonal grid of curves on
the surface of revolution. Namely, the derivatives of the vector x with respect to the
azimuth f and radiusr are

X = 1111;( =(—rsinf,rcosf,0)" for the paralel and
_Ix _ . T -
Xy = " =(cosf,sinf, z) for the meridian,

and their scalar product x; .x; = 0.

The angle between the cord trgjectory and the parallel of radiusr

a = arccos (x; df /dx)
can be measured by relatively simple means so its use is advantageous. The
infinitesimal triangle from Figure 3.1 shows that
dl cosa =r df.
Thus,
di®=dr®+ dI* cos” a + dZ
and
di? (1-cos’a) = di’sina = dr® + dZ*.

For the sake of simplicity let f, z and a be differentiable functions of r up to a

sufficiently high order and O<a<p. Then dz(r) = Z'(r) dr, df (r) = f "(r) dr and further

2 L 4,2 4 72
A = dx® +dz°(r) _ J1+Z°(r) dr

sina(r) sina(r)
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Putting this into Equation (3.2) gives
1+ Z2(r)
sin®a(r)

and by simple rearrangement one obtains

)
df (r) = N1+ 27N dr

r tana(r)

dr? =dr? + r’df? + 22 (r) dr?,

The total length of the spatial curve and the azimuth angle between the endpoints
A, B (Figure 3.1) isthen

1+ Z72(r)

he= @ . dr,

sina(r)

72
L(r)dr.

r tana(r)

I}

) (3.3)
fas= (‘)

B

i —t

The derivative Z (r) for r® ra tends to infinity, (gm Z(r) = =¥, and both integrals
r® ra-

(3.3) are singular. But for i ra—gi < 2R the length of the arc of the circle
(r-(ra-R)*+Z=F
expressed by theintegral

s
O 1+ Z2(r) dr
A
is final evidently. The same is true aso for O<a(r)Ep/2 and any reasonable meridian
curve z(r). If a(r) = p/2 (radial carcass),
A A
e = O J1+Z%(r)dr, fae= Odr=0.
B I
Problems with singularity may be avoided by transforming the integrals (3.3) to line
integrals of thefirst kind [9]. Theinfinitesimal length of the meridian curveis

ds(r) = \/1+ Z?(r) dr.
Thus, if sag isthetotal meridional length between the parallelsr =rg and r =rp, then

SAB 1 SaAB 1
las = € ds, fae= ¢ ds.

Ae (()) AB (()) r(s)tana(r(s))
These formulas together with numerical computing the integrals [10] played very
useful role severa decades ago, because then the tires used to be given merely by its
cross-sectional drawings and both values Iag, f as had to be computed manualy [20].
For example, the 3-nodal Gauss quadrature formula needs three radii r.1, ro, r1 shown

in Figure 3.2a. This may be even simplified, when calculating over the whole meridian

sina(r(s)) (34
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arc asshown in Figure 3.2b (with a greater error).

I/‘

58
0.-2%emy,

va \4{{‘%?’ 0

ﬁ " \'}{3.

Figure 3.2 — Radii used in Gauss formula for computing integrals (3.4).

3.2 Geodesic Lineon the Surface of Revolution
Let a convex surface of revolution be given by its meridian curve z(r) and let the
shortest line connecting its two fixed endpoints be found (a tensioned fiber laid on the
surface so that it goes through two given points on it). On the interval (rg, ra) of
unigueness of the functions zand f this problem may be written as follows
A A
Iag[f] = (‘)J1+ Z2(r)+r%2(rydr= ¢ f(r,f) dr ® minimum.
B B
This is a smple problem when using the calculus of variations [9]. The
corresponding Euler-Lagrange equation
d (. f90_,
drg Mme &

hasitsfirst integral

( 2
M, f9 _ r<f &r) — r df - const.

frte \/1+ Z2(r)+r2f &(r) dl

But rdollf = cos a (Figure 3.1). Therefore the geodesic line on the surface of revolution

is characterized by the following equation
r cosa(r) = const.
(Clairaut’s equation).
The choice r = a presents the simplest case — the cylindrical surface (a circular tube)
— on which the geodesic line, helix, runs under a constant elevation angle (lead). This
curve was found in [9] as a solution of a problem concerning the conditioned maximum.
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Imagine a thin eastic axisymmetric membrane (tube) and a uniform net of fibers
(free cords without any rubber matrix) fixed only to two paralels in beads and
otherwise freely frictionless movable on the membrane. The overpressure in the fluid
within the membrane would force the cords to reshape in such a way that the volume
enclosed by the membrane is maximal:

e I A
SO rzindr | 1+ 2@(r)+r2f@(r)dr =gy

g s s

Such problems, however, will be solved later in Chapter 4.

3%® max.

Qb O

3.3 Carcass Expansion and the Angle a(r)

The cord net in tire carcass on the building drum is embedded in the matrix of raw
rubber compound. The expansion of raw carcass can be viewed as aradial displacement
of the cord system in a very viscous liquid or something like this. Problems of this type
are probably difficult to solve even today. That is why different models were set up to
capture the behavior of the cord net embedded in the rubber. Ignoring the possibility of
local shear displacement of cord plies there are two extreme cases to distinguish:

§ If the cord length has to be preserved, which isin full accord with redlity, the
cord net is modeled locally as a combination of two systems of paralel rods
connected together in fixed joints (Figure 3.3).

§ Between every two parallé rods is an incompressible material and the distance
between neighboring cords in the corresponding layer must be preserved, i.e.
joints must be displaced (Figure 3.4).

R

JaSetesstsssesed

<" Ad

Figure 3.3 — Pantographic model of the carcass cord net.

o)
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= FAD |y

Figure 3.4 — An element of the cord net.

In the first case the distances DI between the neighboring nodes of parallelepipeds are
constant, which implies
Dl =rDf /cosa(r) = rp Df /cosap,
i.e.

cosa(r) _ cosa(p) _ o (cos)
r b

Thisisthe traditionally used cosine or pantographic rule.
The area of one parallelepiped of the net is
A(a) =DI*sin(2a) .
This means that A tends to O if a® O+ as indicated in the lower part of Figure 3.3. The
maximum expansion ratio isthenr/rp = 1/cosap and cosa(rp/cosap) = 1.
One can, however, suppose that the rubber matrix surrounding cords would resist
such squeezing out. The distance of two neighboring cordsis (Figure 3.4)
d(r) =2r Df sina(r).
The assumption d(r) = const. leads to the following equations
d(r) =2r Df sina(r) =2rp Df sinap =d(rp),
I.e.
rsina(r) =rpsinap = const. (sin)
Thisisthe so called sinerule[21].

Requirement of preserving the area A(a) is a compromise between those extreme
cases. The distance DI between two neighboring nodes on the same cord is now variable
but the area A can be expressed by diagonals in the parallelepiped in Figure 3.4. The
horizontal diagonal u, = 2r Df , the vertical one u, = u, tan a, therefore

A(a(r)) = ;uv Up = ; (2r Df )?tan a(r) =2 (rp Df )?tan ap = const.

Then
r’tana(r) =rp’tanap = const. (tan)
This may be called the tangent rule.
Another compromise rule isthe generalized cosine rule
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cosa(r) = aeL% cosap . (E)
D g
It comprises as specia cases either E = —1, i.e. the Clairaut’s relation for geodesic line
on asurface of revolution, and E =1, i.e. the usual cosinerule.

50

45

40
deg.
g35
30 cos, E=1 %\
sin \}\\
tan
25 -
E=09 \\
= -E=0.8
20 - \

m Experiment

15 v v ‘ ‘

1 1.1 1.2 1.3 1.4 15
rirp

Figure 3.5 — Comparison of angles a(r) computed with the mentioned rules to the measured valuesin a
strip cut of two raw rubberized cord plies assembled with angles ap = +50°.

Figure 3.5 shows the angles a(r) computed by the mentioned rules compared to
results obtained by stretching the strip of width 0.1m made of two raw rubberized textile
cord layers with angles ap = £50°. The rule (E) with E = 0.9 fits the measured values
quite well. But the straight line through the point (1, 50°),

a(r) =50-52.95(r/rp — 1),
fits the measured data also good and F-test [11] shows statistical equivalency of both

the functions,

5 )
a (@golry) - ag)

F= k=1 = 1.764155 < 3.47370 = Fo5(11, 11) .
& (50- 52.95(r, /1y - 1)- a;)?
k=1
The dependence
r
a(r)=ap—-c(— -1) (L)
'p

can be taken as afurther expansion rule, the linear rule.
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Though the radia tires are clearly dominant today, the description of crossed cord
systems deserves some attention. Belts of radial tires are still built as diagonal systems
and it is important to realize that a small expansion at angles round 20° introduces the
reduction of width of the corresponding ply,

W _ sina(r)
Wp ~ sna D

which may be significant. For example if the origina width is Wp = 200mm, the angle
ap=22° and the expansion ratio 1.02 (2 percent), then the rule (E) with E = 0.9 gives

a = arcos(1.02%° cos(22°)) = 19.29° and
sina(r) sin19.29°

: =200 ————— =176.4mm.
snap sin22°

W:WD

The reduction of the corresponding belt ply is therefore almost 24mm, i.e. 12 percent.

3.4 TireBuilding Parameters

The rubberized cord fabric is cut so that cord plies of rhomboid shape with prescribed
width are prepared. The cutting angle ac is approximately equal to the angle ap (given
by the angle aa on tire equator and expansion rule) but sometimes it needs to be a bit
corrected, e.g. with respect to possible circumferentia elongation.

Another quantity that must be set up is the width Wy of the building drum. It is
essentialy determined by the cord length Igag = 2lag equal to the length of the helix
representing the cord path on the building drum and the angle ap :

Wp » 2|AB sin ap.

There are severa technical details concerning the shape of bead parts that must be
respected in practical determining the values of ac, Wp and carcass ply widths for
individual tires and building drums.

Mathematical analysis of relationships among the angles in tire and on the building
drum, the cord elongation and the building drum width was in a more detailed way
presented in [22,23].

In radial carcassthereisa(r) = p/2, of course. Then, obviously, ac=ap =p/2and
Whb » 2lag With respect to possible increase due tightening cords in beads.

P
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4 EQUILIBRIUM SHAPE

So far the carcass expansion with no respect to the final shape has been dealt with. The
carcass expands to a fixed shape in the vulcanization press when it is pressed against
the mold surface by heating medium in the bladder within the tire cavity. If thereis no
outer support then the carcass itself must resist the pressure on its internal surface and
change its shape in accordance with the general principle of energy minimum.

The energy of inflated tire at zero velocity is composed of the elastic energy of tire
wall and the energy of the air compressed in tire cavity, Epot = Edas + Ear. It Was
shown in Section 2.3 that the energy Eqas Can be taken negligible. Then the tire wall
can be reduced to a surface of revolution whose final shape is fully determined by the
carcass cord net.

4.1 Air Volume Theory of the Tire Meridian Curve

We will consider the unloaded inflated tire rotating with angular velocity w. Variable
thickness and density of the tire wall is reflected in surface density r (kg/m?) of the
surface A representing the upper half of the tire (z23 0). Let P be a point on A. The
kinetic energy of the whole surfaceis

Exin = L Or (P) r?(P) dA(P) .
2 A

Let the rotating tire be considered as an energetically closed system. The surface A

in cylindrical coordinates is expressed by afunction
z=A1(r, f).
Local measuring lengths and angles a point P of the surface is performed in tangentia
plane at this point, i.e. in the plane determined by two independent tangential vectors at
that point [9]. The square of the length element is
di = g, dr®+ gs df >+ 2 g dr of ,

& Orf O

@grf 9ff &

In the case of axia symmetry with respect to the axis 0z the surface is given
completely by its meridian curve z=1f(r). Using (3.2) gives

whereg = isthe local metric tensor.

gr = 1+14(r), g =0, O =12
Thus,
dA(r,f) = g, ¢ - g3 drdf = @+ f@&(r)r? drdf =r. 1+ f&(r) dr df
and
'a 2p
Eiin = W O r.f)rfrjiec@e)drdf =w § ) r(r, f)r’ 1+t &(rdrdf.
(8.ra) (0,2p) s 0
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The mass is supposed to be distributed axisymmetrically, r(r, f) =r (r). Dueto finality
of r and r (r) the existence of the integral on the right hand side is obvious and the
Fubini theorem [9, Section 3.4] gives

A
Eanlfl = 20w ) r(r)r/1+ 1 &(r) dr .
s
The volume of the cavity T corresponding to the meridian curvez=1(r) is

V[l = O dxdx.dxs.
T
Transition to cylindrical coordinates and the substitution theorem [9, Section 3.4]

yields

V[f]:zbw dr df dz,
w | 90.f,2)
where
W={(r,f,2):re<r<ra0<f <2p,0<z<f(r)}.
The Jacobian
osf - rsinf 00 o
M:detgiinf r cosf ngdetae:.OSf - rsinfo_
i(r.f,2) g 0 0 1; &sinf  rcosf
Thus,

A 2p f(r)
VIf]=2 (‘) (‘) (‘)rdrdf dz.

rg O 0
Using the Fubini theorem gives
1y A
VIfl=2 g 2prf(r)ydr=4p ¢ rf(r)adr.
s s

I'he potential energy is considered equal to the energy of the air compressed in the tire
cavity, i.e.
V, ae \Y V[f]o
U = pPeVo | 0 = _pVal = 0-
pot[ﬂ PoVo nv—m PoVo ngl » é

A
=po[Vo—4p ¢ rf(r)adrl],
s
where Vo, po are the initial volume and absol ute pressure, respectively.

Thetotal energy
E[f] = Exinlf] + Upaf]
isthen afunctiona depending on f and in real conditions E[f] is always minimized,
E[f] ® min.
The function f is supposed to be smooth sufficiently and satisfy conditions of
preserving the following two invariants of expansion,
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L[f] = gmdr =g, F[f] = ‘A mdr:fAB- (41)

sina(r) 0 rtana(r)
3 s

Search for the conditioned minimum of the energy of rotating tire may be shortly
written as follows

(E[f] [L[f] =lag, F[f] =fas) ® min.
This is the so caled isoperimetric problem with two isoperimetric restrictions
[9, Chapter 6]. The standard way for its solution is based on finding a stationary point
of an auxiliary functiona

H=E+nL+nF,
where mand n are unknown constants (Lagrange multipliers).
Obviously, omitting the constant Vo and putting p =po one gets
A
H[fl = ¢ h(r,f,f)dr,
s

where

1+ @) 1+ FE()
her, f, ) =wr (N r3. 1+ f&(r) — 4ppr f +m +n
( ) ) ¥ ) PP sina(r) rtana(r)
é o 3 m n
& U 1+ f & —4pprt.
SW” +sina+rtanal‘.’l ¥ ad
The corresponding Euler-Lagrange equation sounds

_da&mho gh_d ge 2 m u 9
eI o T rrd+ = +4ppr.
g‘nf ¢ f  dr gs sina rtanaH /1+f :
Integrating this equation gives
& , 0
Cwr 3 —2pp(C—r)
68 "dna rtanaH /1+f

where C is a constant. Further simplification may be attal ned by introducing the angle
g by equation
tan q(r) = (r).

Then
Wrrde Mo, smq(r) 2pp(C —r?)
8 sina rtanaH
and
2 2
snq=- PP -0 - Zp";(r © . @2
€2 3, N 0 2 cosa il
SW” sina rtanal @Nrr +smaem+n roo

On the right side there are three constants, C, m n, that are to be determined by
other conditions. The function f is differentiable on (rg, ra), thus, its derivative f~
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vanishes at its maximum representing the “width” W of the tire carcass (Figure 4.1).
Denoting the corresponding radiusr,, it isobvioudy f’(ry) = 0. Thisimplies

. 2pp(r -
sin q(rw) - _ . pp(rW ) - O
€5 4 1 cosa U
aner ry, + m+n g
) sina g 'w &g
and
C=ry.
“ tangent
W
ZB Ty
Jr) )

0 e r
rB rw ¥ rA v

Figure 4.1 — Sketch of a typical carcass meridian curve.

The maximum radius — the upper boundary of the domain of function f is defined by
the equality
q(@) =—p/2.
This in many cases represents the carcass equator with radius a, especially in diagonal
tiresor in tireswithout belt. Then (likein Figure 4.1)
a=ra f(a)=0.
For r = athe equation (4.2) yields

2pp(a? - r2)

sng@) = - — =-1.
€ 2, (a)a3 + 1 ae cosaou
g sna@& | a
From here
cosa(a)

m= [2pp(a® —rv?) —wWr (a) @] sina(a) —n
This and the Equation (4.2) give

2 2_2 20p(r2 - r2)sina(r

Sng(r) = - pp(r? - 1) _ pp(r? - ry) sina(r)
€ - 3, 1 a cosa ¢ cosa ¢l

r(r)r m— r(r)r3sina(r) + ém+n
g/v() Sna(r)e % gW() ()9 ; }j
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2pp(r2 - rv%) sina(r)

cosa(a) 4+ o052 ol
o

ngr (r)rssina(r)+€f‘2pp(a2 - r\,%)- w2r (a)as]sina(a)- n
e e

_ - 2pp(r? - 1) sina(r)

w2[r (nrisina(r) - r(a)assina(a)] + 2pp(a? - r\,%)sina(a)+n€ejosa(r) - cosz(a)g
& 2

4.3)

This general formula includes several important cases. The cosine (pantographic)

expansion rule (Section 3.3) eliminates the constant n due to its multiplication by 0O, i.e.

it makes the conditions (4.1) dependent ( F [f] = L[f] cosa(a)/a). If inthiscasew =0

(static condition), the influence of mass distribution is annulled and one obtains the
well known formula (e.g. Hofferberth [2], Biderman [3,25])

(r2 - r\,%) sina(r)

sna(r) = (a2 - rv%)sina(a)

Knowledge of the function sin g(r) enables calculating the function f by means of
numerical integration,

0 =1+ § SN,

rn 1- sn?qu)

r .
. . sing(u)
f(r) =f(ro)) +sgn(r—-ro) 0 ——-—~— du,
ro 1- sinq(u)
where the free integration variable (radius) is denoted by u to prevent ambiguity.
Since sin q(a) = -1, the square root -/1- sin® g(u) tendsto O for u® a—. Thus, the
r

integral () becomes singular and a special treatment is needed to compute it. The

o

or, more generaly,

derivative ddr sin q(r) isthe curvature of the planar curve z=1(r) [9],

(fC
fef1rf@ - fe T

1k(r):;rsinq(r):d fo J1+ @ fe

dr 14 £ @ 1+ f ¢ @+ fR)2

The curvatureisfinal and different from zero. Hence, near the point r = a the function f
can be approximated by the arc of its osculation circle, (a—R)? + Z2 = R, where

1
'k(a)
The meridian curve can be computed in the two following steps:

R(a) =
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§ First a small number e (precision) is chosen, e.g. e=10™, and the osculating arc
z(r) =./(2R- a+r)(a- r) over theinterva [(1-€)a, a] is constructed.

§ A decreasing sequence (1-€a=ro>r;>r,> ... >ry=rg ischosen and coordinates

ri .
Z=dr)= za+

iy | 1- sin®qu)

are computed numerically (by Gauss' 3node formula, [10]).

du

The distances between points should be chosen dependently on changes of f “(r),
e.g. 1 (ri—ri.1) f(ria)i » const for bigi f"(ri.1)7. More details concerning preciseness,
partitioning the interval [rg, a] etc. can be found in [10, 26-30].

4.2 Designing Problems

z

W

0 3

Figure 4.2 — A sketch of the problem (A) for a diagonal tire given through its main dimensions.

Static case plays a fundamental role in attaining the given (standard) dimensions of
atire on aprescribed rim because the declared tire width and diameter are measured on
inflated and unloaded tire in static condition. Subtraction of thicknesses on equator,
sidewall and beads gives a, W and an arc concentric with the arc of rim shoulder on
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which the bead point (rg, zs) isto be put. Figures 4.1, 4.2 show that the sought function
shall satisfy the following conditions:

0= 0 09 =g,
rgm ;, (@ W,rs z) a(rwa@) (A)

)= g oW gy =w, !

2 snqu) b

There are no other conditions. Thus, if the cosine rule (cos) does not hold there may
be infinitely many solutions of the equations (A) depending on the parameter n/(2pp).
If the cosine rule does hold and the solution of (A) exists, it is determined uniquely.

¥

A good initial estimate may
be obtained when the meridian
curve is approximated by the
ellipse inscribed into the
2Wx2(a—g) rectangle and
running through the bead point
(re, zs) (Figure 4.3). It yields

.2
By 1282
Mo a eW g

— »

a o O
1+.1- €82+
eW g

Figure 4.4 shows a nomograph
for an approximate solution of
the problem (A). In this
nomograph the parameter r,/a
W Zs 0 determines a curve. Its
intersection point with the
abscissa line Wa determines
theangle a(a).

In [29] there is also an application of the Gauss' method described in a more
detailed way. This method is atwo-dimensional analogue of the secant method in the
case of asystem of two nonlinear equations [10]. Another method can be found in [31].

hit

Z

Figure 4.3 — Approximation of the meridian curve with the
ellipse inscribed into rectangle given by main tire dimensions.

Remark. One could use also other kinds of curves to approximate the meridian curve, e.g. some
kind of spirals.

F. KOUTNY: GEOMETRY AND MECHANICSOF PNEUMATIC TIRES



30

4 EQUILIBRIUM SHAPE
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Figure 4.4 — Nomograph for approximate determining r,, and a(a) in inflated diagonal tire.

If the second condition in the system (A) is substituted by two isoperimetric
conditions (4.1) the following system of equations arises

f(rg) = C

5/ 1- sSinq(r)

GOy gy, T

{
'r
i
= IAB’ Iy (L, F, g, ZB) a (a, 'y n) (B)
|
|
'r
|
|

b
that represents the so called problem (B). This system of three nonlinear equations
should warrant unique determination of the three unknown parameters a, n/(2pp) and
rw. The problem (B) may be viewed as a transcription of the original problem of the
search for the equilibrium meridian curve of the diagonal carcass (the word diagonal
relatesto a(r)<p/2 while radial means a(r)=p/2).

Solution of the system (B) for a chosen equator radius a and a fictive eligible
function a (r) may be used to design the mold for the devel oped tire [30].
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As soon as the polar angle between both the cord ends in beads, 2f g, iS once set up
on the building drum, it remains practically preserved during the next production steps
and in exploitation as well. Conversely, the cord length, 2lg, especialy in nylon or
polyester materials, may change due to tension induced by inflation pressure, elasticity
and creep. This must be taken into account and the carcass meridian curve in mold may
be computed according to the assumed reduced cord length, 21,5, and possible axial

bead displacement, zz® zg(Figure 4.5). The fixed angle f oz can be attained naturally

by reduced values of the function a(r). The radius of carcass equator remains €ligible,
but it is usually chosen a £a. Thus, for a given expansion rule an angle ap must be
found that substitutes the unknown ain (B).

tnflated, ! A

molded. | .

meridian

Figure 4.5 — Paths of the same carcass cord in mold and in inflated tire.

Solution of problems (A) and (B) does not exist whenever one likes. Also practical
computation is relatively difficult. Those problems are discussed in more detall e.g. in
[29,30]. In [30] the influence of rotating velocity on the tire shape, e.g. that of mass
distribution is discussed.

Nevertheless, diagonal tires have turned to be rather a specialized sort of tires today.
So we can abandon thistopic.
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4.3 Special Cases

4.3.1 Tubular Tire

Tubular tire is a toroidal pressure vessel with a closed meridian curve (Figure 4.6).
Minimizing negative consequences of hysteretic losses leads to small thickness of
carcass composite and tubel ess construction [32].

z

Figure 4.6 — A schematic of the tubular tire meridian.

Due to small expansion ratios of carcass (not exceeding 1.1) one could use any of
expansion rules of the section 3.3. With respect to tradition, however, the usua cosine
rule and the basic formula are preferable

(r2 - r\,%) sina(r)

sna(n) = (@%- r2)sina(a)

The closeness of the meridian curve implies the following boundary conditions at the
endpoints r,, a of the meridian function f :

f(r)) =0, sing(rp) =1,

f(a)=0, sinqg(a) =-1.
Let us define r,, by the equation sin q(rw) = 0. The cosine rule and introducing
t,=ry/a, ty=ryw/a yiedimmediately

1. %2 412
cosa(a):\/ 2y 1

(1+t§)(1- 2t\,2\,) +tt‘,1 +t\f, '
This enables to solve the boundary problem by means of one parameter t,,.

Solutions of severa boundary problems for ry/a = 0.1, 0.3, 0.5, 0.7, 0.9 are shown
inFigure4.7.
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Figure 4.7 — Meridians of closed toroidal cord-rubber composite membrane related to the equator
radius a and several bottomradii rp.

If such a meridian curve is taken as mold profile and the angle acorq between cord
and equator is chosen arbitrarily, then the equation

o(R) ° a(R) — arccos (: COS Acord) = 0

defines the corresponding equator radius R after inflation. This equation must be

acosa(a)

solved numerically [10]. Ry = gives agood estimate of R.

CoSsa g
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Example. Let us choose a = 330mm, r, = 305mm. The corresponding meridian curve
shown in Figure 4.8 is chosen for the meridian of molded carcass. Solving the
boundary problems gives: t, = 0.962135, a(a) = 53.41646°, L = 47.96014mm,
F = 0.08662rad., V = 0.979448dm°. The cord angle for building the tubular tire is
chosen acorg = 50°. Then the corresponding cord length is

a‘@dr:a\ sna(r) mdr» sina(a) L

Leord = O

f sina g (1) o Sinacyqg(r) sina(r) sina gorg
_ SIn5341646° - 56014mm = 50.27313mm.
sin 50°

15

Inflated g™

Z, mm Volume V=1.010493dm®

4
!
0 I T T T T
260 2% 200 205 300 3¢5 31 0
%
5

-10 4

..'lllllllll"..- —

LS}

Figure 4.8 — Meridian curves of molded and inflated cord-rubber composite membrane with
Acorg = 50° <53.4° = a(a).

Now the new equilibrium equator radius R is to be found. It may be expected in the
a cos53°

neighborhood of " 00s50° » 310. A simple program in DELPHI was set up to find
cos

the equilibrium meridian curve for the couple (L, R). It gives:
Ro=310mm 3%® ag=53.199405°, go=-0.30091,

R; =315mm 3%4® a;=53.232299°, g; = +0.418857.
The inverse interpolation yields

1 10-g0 Ry

Fou= Ji1- 9 0-a R

=312.09mm,  g(Ro1) = 0.00068.
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Another iteration step may be performed with Ry = 312mm and R; = Ry;. One obtains
R = 311.4323mm, which yields the angle a(R) = 53.304177° and g(R) = —1.8x10™".
Thus, it can be taken as the solution of the problem. Repeating the computation with
this new value of R gives the meridian curve shown on the |eft side of Figure 4.8.

This computation can be fully automated, of course.

Integrity of the wheel/tire system on the road requires the tubular tire to diminish its
diameter when inflated in the free condition, i.e. its behavior must be similar to that
shown in Figure 4.8.

Figure 4.9 shows genera trend of equator and meridian changes with increasing the
carcass cord angle. If the mold meridian curve determined by the couple of a and a(a)
remains the same then due to the inflation the free tubular tire radius R increases or
decreases according to the difference acrg — a(@ while the volume V of the tire
increasesin any case.

Acord = 45° 50° Mold, a(a) = 53.4° 56°

-15

-20

Figure 4.9 — Meridian curves of molded and inflated cord-rubber composite membrane with different
cord angles acyg.

Considerable changes in cord carcass angle acorq produce but small changes in the
resulting equilibrium angle a(R) as shown in Figure 4.10. The equilibrium meridian
curves are therefore similar and almost circular ones.

These considerations represent an approximation of the real behavior of tubular tires
because they neglect the stress-strain behavior of cords, which is not negligible at usual
high inflation pressures in tubular tires (up to 1.2MPa and more). Nevertheless they are
very realistic in the range of the cord angles ac,rq between 40° and 60°.

Theradius Ris strictly limited from above by the cosine rule that gives

a

RE ———.
COSa ¢org

F. KOUTNY: GEOMETRY AND MECHANICSOF PNEUMATIC TIRES



36

4 EQUILIBRIUM SHAPE

54

53.5 /
a(R) deg. /

53
52.5 /

52 T T T T T

35 40 45 50 55 60 65
a cord » deg.

Figure 4.10 — The resulting equilibrium angle a(R) depends only weakly on the cord angle acorg in
building the carcass.

4.3.2 Radial Carcass
Radia carcassis characterized by identity

_b
a(r)= -
="
that reduces the Equation 4.3 asfollows
2.2
sna= e rw) . (4.4)
w 3 3 2 .2
—[r(r)r -r(@a’]+@° -r
2pp[ (r) (@a”]+( w)
W2
The fraction P reflects the antagonistic influence of the velocity and inflation
PP

pressure on the shape of the rotating radial carcass.
In static case the formula (4.4) issimplified to

-(r?-rd) 2 .2,.2 .2 1859
2 2 2 2 .2
a-ry as-ry a0
1- g—i
ag
Introducing the dimensionless parameter
1- ?WQZ
| = €edg (4.5)

2
brings the following simplification
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o0
1' ({‘*T
sinq(r) = ez?ﬂ ~-1 (4.6)
Then
i aE-(@- 2)F] | <},
I 4
a(l S)
fr;a,l)—f(@)= | a[S+§I ] for | =£11, (4.7)
T
T -
i a2E2kF | >1
| 4’
where
o df

F=Fkfr)= 0 ————— .,
9 1-k?sin?f

£(r)
E=Ekf()= ¢ 1-k*sn’f df ,

are dliptic integrals of the 1% and 2" kind in Legendre’ snormal form,

2
S=g)= /1-
a
K =4l and f(r)=arcsin S(r) for | <411’
@=L and  f(r) = arccos — for | >
4 a 4

Severa examples can be seenin Figure 4.11.

Thelength | of an arc of the meridian curve over aninterval [r, a] may be computed
asfollows[33]

i 2a F | <E’
i (@9 )
Ir;a,1)=1@ = | for | ==,
; 4
I aF L
Lo | >,

Similarly, the volume V of the corresponding cavity
a
V(r;a,1)=4pQ rf(r; @) dr = 2p [a*f(a) — r*f(r; @) — ()] -

r
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Figure4.11 — Functionsf(r; | , a)/a for f(a)/a = 0.1 and several | .
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Here, on theright side,
a 1 24 o _ 12
I()= ¢ rPtanq(r)dr = & t°d-2 - t%)

dt
r r/la \/(1' tz)(4| - 1+t2)

1 ad@+2r?/a?) S(r)/6 | =1
= ! for 4
! 1°
{a®H{E() - H(E(@)]/6 I 4

where
I 2F (k2- 1)+ (2- K2)E +I(F (1)) | <t
H( () =t for 4
FIF@- k?)+(@2k%- DE+I(F (r)]/ K3 >

and

J(f (r)) = K sin(2f (r)) Jl- kZsin?f(r) .

Figure 4.12 shows that the theory presented here can be amost immediately used in
overpressure expansion of the radia carcass in the second stage of radial tire building
[34]. The basic task is to minimize the energy E needed for joining together the belt
and the carcass. The shape of carcass is controlled by the distance dg between its
beads, E(ds) = g(f(a; dg)). Obvioudy, a = const. and f(a; dg)/flds = O implies
dE(dg)/dds = 0, so the width of contact area 2 f(a; dg) isto be maximized.

Cylindrical belt |

Gap

NN
AT N N N

Optimum bead-to-bead distance

<
<

Figure 4.12 — Radial carcass expansion.
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4.3.3 Isotropic Axisymmetric Linearly Elastic Membrane
The meridian curve of alinearly elastic isotropic membrane can be found when solving
the problem

&, & U pe 0

pg?o- Orf(r)dru + I; eoh(r)r/1+ fG?(r) dr - hgAgU 3® min.
ezp 1 e ¥
e s u €B u

where Vy is an initia volume bounded by the non-extended membrane, E is the
elasticity constant in Nm™?, Aq istheinitial areaand h is the thickness of the membrane.
The membrane is supposed to expand in all directions uniformly. The additive
constants do not influence the extreme behavior of the energy sum on the left side.
Thus, one can introduce an energy function

F(r, f, £) == 2pr f(r) + Eh(r)r -/1+ f &(r) .

The corresponding Euler-Lagrange equation [13]
. ;
Eaﬁg—ﬁ = E(Ehr f7)+2pr:0
dr g'ﬂf Gy If dr 1+ f @

can be easily integrated (as usua we put LA =dnq)
1+ f &
Eh(r)rsing+pr®=C = const.
The parameter a denotes the radius at which g(a) = —p/2 (sin g(a) =-1). Thus,
C = pa’— Eha = a(pa— Eh(a))
and
sin () = a(pa- Eh(a))- pr® _ ) a®-r? ah(a) |
Eh(r)r Eh(r)r rh(r)
Let us consider the simplified case when the thickness h(r) is constant (independent
of r), i.e. h(r) = hy. Then
p a?-r?2 1 pa® 1- (r/a)® 1

sinq(r) = - = :
Ehy rla Eah, r/a r/a

If anew variablet =r/aisintroduced and K = Ep; > 0 isanew constant, then

K@-t?)-1
B

Obvioudly, t = 1 determines the upper end of the domain of f, sin q(1) = 1. The
lower boundary of the domain of f, t = ty, is defined by sin q(t,) = 1 for K3 1 and
sinq(ty) =-1 for O0<K<1, i.e

B o K
| - <1
Therole of the parameter K in case of fixed boundary isillustrated in Figure 4.13.

sinq(t) =

for
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o5 Ilry 1

Figure 4.13 — Meridian curves of axisymmetric, isotropic and linearly elastic membrane.

After several simple arrangements the meridian curve can be expressed by means of
elliptic integralsin the following way:

. . K- t%)-1
L sne) N i
fn=ag ————dt=a g dt
ria \1- Sinze(t) rla \/1 g:K(l- tz)' 192
t -
a
s g Ka-t%)-1 % -UK)-t*
r/a \/t2 - (K(]_- tz)- 1)2 r/a \/(1- tz)(tz - (1‘ 1/ K)Z)

In the important case of K > 1 (Figure 4.14) one obtains
f(r) =a[E(k, f) - (1-1/K) F(k, )] ,
where

oK -1 e [1.420
k=.1- (1- 1/K)? = 2K ad f=arcsintk | U =

-1
K g 2K-15‘
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The special caseof K = 1 yiddsk=1, f = arcsin\/1- t2 , i.e.
f(r) £r)
f(=aB(Lf)= & /1- sin*f df =a gosf df =sin(acsin\1-t?)
0 0

=a/1- t? .
In other words, K =1 gives f2(r)=a%(1—t?) =a’—(at)? i.e acircle
f2(r) +r* = a°.
This result can be obtained directly considering the curvature of the meridian curve [9]

1.d . 1.d K-1 1 K-1
k()= =17 — snq(t)i = =T — (Kt + T=-7T-K- T,
® a dt a) a dt( t ) a t2

where K=1 implies k(t) = E.
a
oo
O%ocb
%
9
K=3 }
K=2

o)
N

a
LJ LJ \V) LJ

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-zla

Figure 4.14 — Meridian curves of axisymmetric, isotropic and linearly elastic membranes
for several K>1.
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The behavior of the meridian curve near the lower boundary of its domain (r = aty)
signalizes a loss of stability — a phenomenon that is manifested by corrugating the
surface of the internal part (i.e. facing towards the axis of revolution) of free tubes
when they are inflated.

Another approach to the search for the shape of isotropic (flexible but inextensible)
membrane or tire can be found in [35].

Remark. Considering r as a function of z, r(0) = ry, r(H) = O leads to the following
H

expression of volume V=p g r? dz. Integration by parts gives
0

H H H
pQ ridz=priz "™ —2p ¢ rzdz=-2p ¢ rzadz.
0 0 0

The variable zistheinternal one and may therefore be denoted by r while the original r

may be denoted otherwise arbitrarily. In this way we get the problem of maximizing
n

the standard volumeintegral ¢y r fdr .

o

4.4 Radial Tire

A schematic cross-section of the radia tire was presented in Figure 1.1 and a 3D
picture of carcass expansion is shown in Figure 4.15. The belt of cord-rubber
composite is a substantial element of radial tire. Its circumferentia stiffness is very
high while its radial bending stiffnessis quite low so it behaves like ausual girdle. The
belt constricts the radial expansion of tire carcass as indicated in Figure 2.11.

The presence of belt as well as that of rim brings restriction conditions on the
carcass meridian. They represent impenetrable areas and carcass comes in smooth
contact with them, i.e. tangents of the carcass meridian and those of belt and bead area
surface are identical at the borders of the contact areas [9, Section 6.4]. In first
approximation the meridians of both the contact surfaces can be simply approximated
by circles (Figure 4.16).

Let Ry be the radius of the belt circle

r—(Ra—Ry)’+Z =R,
J the absolute value of angle between the common tangent and the positive direction
of the r-axis and (rj, z;) the boundary point of the contact area. Because the point
(r3, z;) is unknown it is advantageous to take the angleJ for a new parameter. The
inverse value of the product of radius r; and the curvature 'k at (rj, z;) may be taken
for the second parameter L (Figure 4.16)
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X;—Z
Carcass on
building drum
Expanded carcass
Belt
B
04 X,
A,
X ry
v
R
p
Fig. 4.15 — Schematic of radial carcass expansion.
Lot 1 1 _at-r
- B B 2
KDL Dnegs) 2 |2
dr al-r v%
Now one obtains

f e _rferd

snJ =
a’-r2  2Lr?

From hereit follows
rw=ry ~/1- 2LsinJ,
a=ry 1+2L(1- sinJ),
_ L
1+ 2L (1- sinJ)
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0 (Ra 05[3 9!

Figure 4.16 — Some parameters determining the geometry of radial tire carcass.

In this way the classification (4.7) is preserved and an apparatus for solving static
boundary problems concerning the meridian curve of radial carcass is prepared. The
simplest and most transparent method is the shooting method based on interpolation
among solutions of corresponding initial problems [10]. More details can be found e.g.
in[24].

This theory was presented in form of nomographs [36] enabling manual solving
technical problems (A) and (B) from Section 4.2 aso in radia tires [24,28]. Let us
remark that the problem (A) remains unchanged but the problem (B) due to the
identity F[ f] © Oissimplified asfollows:

f(rg) = O k)

2 1- sin? ()

a

L[f]1= ¢)/1+ fE(r)dr=1 g,

B

dr = zg,

u
.I.
.I.
y (Rale Ruez)® (L,J)  (B)
|
!

Both the problems (A), (B) aswell as mold design require special computer codes,
of course.

When designing mold the distance between beads is increased as usual to eliminate
assembly problems (compressed air leaking between beads and rim especialy in truck
tires). The angular velocity w can be employed to reduce the stress in tire wall. Also
the carcass meridian length should be adapted to cord release in beads due to high
temperature and plasticizing rubber matrix at the start of vulcanization process.
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4.4 Strength Calculations

Material integrity is a necessary condition for performance capability of pneumatic tire
running on the road or off the road. When a crack appears in the tire structure then the
stress on its surface drops to zero and must be taken over by the material in the crack
vicinity. This may lead to a very fast stress increase in that region which ends in total
tire failure. Variability and especially impact components are characteristics of the tire
load and their randomness makes it more difficult to estimate the stresses in conditions
of usual traffic. Materials change their properties during the tire life as well. Thus, to
assure sufficient safety the ratio of material strength versus its static load must be
chosen relatively large.

Tire structure calculations may be based on various physical principles. In Section
2.3 there was shown a possibility of determining cord tension by general means of air
volume changes. The air energy corresponding to the volume difference arisen by the
restricting action of an external load is equal to the energy consumed in elongation of
the considered component — the set of carcass cords. This idea can be used in
calculating tension of belt and beads in radia as well as in diagonal tires [24,37,38].
Thisrequires:

(1) possession of acode to compute the tire volume,
(i) convenient displacement models to grasp changes caused by loading of
considered elements (cord, belt, bead) — like those shown in Figure 4.17.

(b) Belt tension
(a) Radia carcass cord tension

Figure 4.17 — Modéels for evaluating volume changes due to:
(a) radial carcasscord tension and (b) belt tension.

In radial carcass the law of conservation of energy (the first law of
thermodynamics) yields
V(- D)
Nt DI/2» Weord(¥) = Wair() = — @ p(V) dV
V()
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where p denotes the internal air overpressure (inflation pressure) and N is the tota
number of carcass cords. The Boyle law implies

V(- D) V(l-D)
- O PRV § S = —pv) V) In T2
V() V() 0
B V(l - DI)- V() V(l)- V(l - DI)
= —p0v) vy Inca 0 D vy vy YO

= p(V(1)) (V(I) = v(-Dl)) .
Therefore, if N denotes the total number of carcass cords,
vih-v(@-D) 2
DI NP
The belt tension can be derived similarly [37,38] :
V(R+DR)-V(R) _ 1
2p DR 2p

This idea may be generalized to any external force F(X) whose point of action moves
by alongitudinal segment g(x), where x is a parameter [37]. Then

L dv
t="lim p(v(1) OR-08

TR = lim p(V(R) PVR) G R

g(x) V(x)
Winech(X) = (‘) F(t)dt = — (‘) p(V) dV =W, (X)
a(%o) V(Xo)

and differentiation with respect to x gives
d d
F(9(¥) & 9(¥) = p(V(x)) - V(¥ .
X dx

For example: x = DI, g(x) = 2x in the cord tension and X = DRa, g(X) = 2px in the belt
tension.

(rﬂﬂ ZB)

"

0 " (@, 0)

Figure 4.18 — A schematic to compute the meridian stress sy,
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Safe performance of tires seems to be the most probable cause of the search for the
static equilibrium shape of tires as a well substantiated base for strength considerations.
Figure 4.18 shows a basic schematic for computing the meridiona stress sn,. The
z-projection of the resulting force acting on the surface area determined by parallels of
radii ryandr is

FA)= (@ (izpn)dS=p  sin(p/2—-q(t))dS

S(ry,r) S(ry,r)
r
=p @ cosq(t)t:1+ f3(t)dtdf =2p ¢ tat=pp(r’—r?),
(fw.r) (0.2p) hw

where i, is the unit vector in the z-direction and n is the unit vector of the externa
normal. Because sin q(ry) = 0 the force F4(r) is equalized merely by the projection of
total force acting on the parallel of radiusr, F,(r) =2pr sm(r) sinq(r). Thus,

p(r? - 1y

2r sinf(r)

On the other hand, in uniform radial carcass, obviously, sm(r) = n(r) t(r) , wheren(r) is
the number of cords per unit length segment of the r-parallel. Hence,

p(r*-ri) _2pp(r®-r7) _pp@*-1)

sSm(r) =

t(r) = = = const.
") 2r n(r) sinO(r) r2.r2 N
2N— ";
a“-ry
Therelation (4.5) gives
| a2 LrJ2
t(r) =2pp—— =2pp——.
() pp N PP N

The computation of belt tension T seems to be derived in the easiest way by
reproducing main ideas of F. Frank [31]. The projection of pressure force acting on the
contact area of belt and carcass into a meridional plane is shown in Figure 4.19. It is
reduced by the meridional stress at the boundary parallel of radiusr;. Therefore,

T=2pA-—2r3sm(ry) cosd.
The magnitude of the contact area projection Ar can be estimated by Simpson’'s
formula[10],
2
2Ar= Qrdz»
-Z

J

225
6

[r(z2) +4r(0) + r(z2)] = 2? [21(0) + ().

Hence,

T »2p[(2Ra+13) z3/3—L ry?cosJ] .
This total circumferential force is distributed onto individual cords corresponding to
their density and angles with the circumferential direction.
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z

Figure 4.19 — Computing the total belt tension in radial tire.
[ ]
Example. In 235/40R18 tire the carcass meridian curve is given as solution of the
following simplified problem (A) (in mm)
(Ra, W, Ry, s, z8) = (309.5, 115.5, 3000, 249.8, 104.4) ® (L,J).
This yields L = 0.1000949, J = 1.542534, r; = 308.30mm, z; = 84.85mm and the
meridional length | = 15 = 163.4mm. Let us approximate the derivative dV(l)/dl by the
ratio of symmetric differences[10]
V(I +D)-V(- D)
2D

where DI = 0.2mm. Solving the corresponding problems (B),

(309.5, 163.4 + 0.2, 3000, 249.8, 104.4) ® (L, J),
one obtains V(I+Dl) = 22.870251dm?, V(I-DI) = 22.822429dm?®. If the inflation pressure
is p = 200kPa and the total number of radial cords in carcass is N = 4000, then the
individual cord tension is

2 dv
t= NIO(V(D)E (1) »

=2.988875N.
On the other hand,

L 2
t=2pp =9 » 2P 200000 x 01000949 x 0.30832 = 2.988883N.
N ~ 4000

Thus, the difference between the two results is negligible and caused by numerical
inaccuracy.

Let us remark that the rea carcassis never uniform perfectly. Also cord strengthisa
random quantity whose distribution may be well approximated by B-distribution. More
details can be found in [39].

dv
o 1 »

2 200 000 0.022 870 251- 0.022 822 429
4000 0.0004
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In asimilar way one obtains for the belt tension
1 dv V(R+DR)- V(R- DR
= L pvry &Y R » P VRHER): VR DR
2p drR 2p 2DR
_ 200000 0.022911526 - 0.022781049
2p 0.0004

=10 383.03N

and
T »2p[(2Ra+13) z3/3—L ry?cosJ]
= 2x200 000 [(2x0.3095 + 0.3083) 0.08485/3 — 0.1000949%0.3083°x cos 1.542534]
=10 383.314N.
Again, both the results are practicaly the same and the small difference 0.31N is a
consequence of rounding errors.

Remark 1. In uniform diagonal carcass the meridional stress
sm(r) =n(r) t(r) sina(r),

where r denotes the distance from the axis of revolution, n(r) is the total number of
cords per unit length of r-paralel (Figures 3.3, 3.4),

nr)= 00

rsinap

Here np is the number of cords per unit length perpendicularly and ap is the cord angle
on building drum (radius rp). Thus, for the usual cosinerule, cosa(r) = (r/rp) cosap,

sm(f)  __(a%-r7)sina(a) 1 oong
n(r) sina(r) 2rpnpsinap  sin?a(r) sin?a(r)

t(r) =

Thismeans: in diagonal carcass the cord tension isincreasing with radiusr.

Remark 2. If the bead area can be supposed stiff, the tension in wires of bead bundle
may be estimated by tire volume changes due to increase of bead radius and bead
displacement controlled by the shape of rim contour. Another way is using the
projection of the meridional stress on radius s (rg) into the bead plane under the angle

iB-rZC, where (rc, zc) denotes the bead bundle(s) center in rim with
B~ Ic

small conicity (5°). The total tension in bead is approximately

Jc = arctan

's - I'c
J(VB - 1e)? +(zp - 2c)?
If the friction between individual wires may be supposed high enough then the force Tc

can be thought distributed uniformly onto individual wires and their tension confronted
with their strength.

Te »rcSmrs) cosJc=rcSm(re)

P
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5 RESPONSE OF RADIAL TIRE TO
EXTERNAL LOAD

The pneumatic tire is the first dynamical element between the road and vehicle, i.e.
acar, truck, aircraft, bicycle, etc. When designing a vehicle the designer needs to have
some estimates of tire response to the external force signals so that he could create a
tuned project. External loads in tire exploitation are non-axisymmetric which brings
another complexity into tire analysis. Though the belt in radial tires restricts the carcass
in radia direction it, on the other hand, has the advantage in its high circumferential
stiffness. Considering negligible circumferential elongation alowed an approximation
of the “equator” of the vertically loaded radial tire by a smooth combination of four
circular arcs [12]. This model appears to be rather an artificial geometrical
construction. Radia flexibility and circumferential inextensibility of the belt together
with our experimental knowledge [40,41] led later to development of the so called belt
model of radia tire [42]. The belt model is much more genera and besides radial
forces it enables to compute also lateral forces and moments in cornering tires etc.
[43]. It is still relatively ssmple and works with analytical solutions, which provides its
numerical efficiency and easy use. Also in the today’s FEM era the belt model may
serve as an independent source of predictions of tire stiffness in main directions. Many
experimental results have confirmed its consistency and closeness to reality.

The pneumatic tire within the dynamical system of vehicle works as a spring in the
first place. If m denotes the mass of the wheel (unsprung mass), t the time and x the
displacement of the wheel center from its equilibrium position then according to the
second law of motion (e.g. [44]) the following force F is connected with the
acceleration of mass m (if mis assumed constant)

d?x
F(t) =m = (1).
©=m 5

In linear spring (oscillator) thisforce is proportional to the displacement,

F(t) = —kx(t),
where the ratio (stiffness)
k="
X

is constant for any couple (x, F). However, the occurrence of such an idea spring is
very rare. To preserve this transparent linear model the real elastic behavior is
approximated by various substitutions of the stiffness, e.g. by aloca stiffness,
dF (x)
dx
Even an elementary knowledge on tire materials (Chapter 2) leads to expectation
that the tire elasticity does also depend on temperature, velocity of deflection etc. In

K(X) =
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search for logical connections one has — with some arbitrariness, of course — to
summarize the important features into several clearly formulated simplifying
assumptions and set up a convenient mathematical model on this basis.

Dynamical behavior of the pneumatic tire is represented by the following scalar
differential equation of the second order (it can be generalized to vector case easily)

EXO _ 1, x0, SO,
dt? dt
where f is a suitable function (from the standpoint of the existence and uniqueness of
solution [9,10,45]).
The time dependence connected e.g. with temperature changes is ignored as usual,
thus, thermodynamic equilibrium is supposed. Then the last equation may be rewritten
asfollows

d’x _ 1 dx
—0 = — (FX) + G(x,—-)),
e GRS )
where the functions F, G may be simplified (linearized). The ratio G/F isvery small in
rolling tire. This was experimentally verified in radial oscillations in car tires [40,41].
The elastic component FO) plays then a dominant role.

m

5.1 Static Radial Deflection

Our first model that fitted experimental load—deflection curves quite well is described
in [12]. The “equator” of the deflected tire is approximated by a smooth curve of the
same length as the original equator of the inflated unloaded tire. This spline curve [10]
is composed of four sections: the straight segment of the contact area, the large arc
concentric with the original unloaded equator but with a greater radius and two equal
transient arcs of smaller radius enabling a smooth joining the contact area to the free,
unloaded arc. This way the radius Ra is given, “bead point” (rg, zs) is kept fixed and
the meridian length |ag as well as belt radius Ry can be fixed or sightly changed.
Thus, to any polar anglef the following problem (B) is assigned:

(Ras lag, Rn, e, Z8)f ® (L, J)s .
Its solution yields principally the volume Va(f) of the corresponding axisymmetric

body.
Thetotal volume of the model that belongs to the radial deflection uisthen
1 " 1"
V= _—~ o Va(f)df == g Va(f)df.
2p p P o

The last integral over the area [0, y ] of variable radius Ra(f) is computed numerically
(by the 3-node Gauss formula[10]).
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The volume change enables to compute the energy increase of the air filling in the
tire U(u). Doing thisfor n>3 values of u; one gets a set of points (u;, U(w)), 1 =1, ..., n.
It can be fitted by the following regression polynomial

P(uU) = byu? + byt

The external deflecting force F (vertical load) is then found by differentiation of P
with respect to u,

F(u) = 2byu + 3byu? .

Direct measurement of air pressure increments in the 185SR14 radia tire at various
deflections is described in [12]. There is aso mentioned their comparison with
corresponding predicting curve determined from volume changes of model. In this case
the ratio of the air energy represents 92-95 percent of the total deflection energy. This
corresponds excellently with the vertical stiffness regression published in [13] recently
(as mentioned in Chapter 1).

5.2 Belt Model

The ring on elastic foundations belongs to the models that are permanently used in the
mechanics of tires. However, the elastic foundation created by linearly elastic spring
does not describe the behavior of tires faithfully and must be improved in various
ways.

The belt model (Figures 1.1 and 5.1) is consistently based on the air volume work
and uses the consequent theory of meridional curve (Chapter 4). Volume changes
derived this way imply nonlinearity of the foundation in dependence of radia
deflection. The basic theory was published in [42,43]. Here only a short survey will be
given with some supplements.

Figure 1.1 shows the basic partitioning the radial tire into:

8 low stiffness (modulus) tread area consisted of thick rubber layer equipped with
tread pattern (grooves, sipes etc.),
8 reinforced area of carcass, belt and beads with high stiffness in specific
directions.
Equilibrium shape of the reinforced part was the theme of Chapter 4. In the foregoing
Section 5.1 the volume of axisymmetric cavity swept by the meridional curve was used
to compute the volume of non-axisymmetric cavity of verticaly deflected tire model.
The same principle creates a basis for using the elastic support that may be
characterized by three coefficients of stiffness connected with axes of natura
cylindrical system of coordinates Orf z
8 u =radial coordinate, k, = coefficient of radial stiffness,
8 v = circumferential coordinate, k, = coefficient of circumferential stiffness,
8 w = axial, lateral coordinate, ky = coefficient of axial, lateral stiffness.
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h
P —— W,

e Wy ey

Figure 5.1 — Main geometrical parameters
to set up the belt model of radial tire.

The stiffness coefficients k are computed
by means of axisymmetric displacements of
belt. If X is such displacement (radial,
circumferential, lateral) and W(X) denotes
the corresponding energy change computed
by the ar volume changes including
estimated stress-strain energy of tire wall,
then in linear support

2p X
W(X) = 50 kx X dX Ra df = pRa kx X
00
Thus,
1 dAW(X)
*T 2R, dX?2

The second derivative is computed
numerically [10] , of course,
d2W(X) N
dx 2
W(X +DX) - 2W(X) +W(X - DX)
DX 2 '

Originally the stiffness coefficients were
caculated for X = 0. But to include
nonlinearity, they may be considered as
functions of X. In the case of radial stiffness
coefficient k, the use of belt tension is

advantageous (Section 4.4):
kKu(Rp) » - p (V(Ra+DRp)-V(RA)) - (V(RA)- V(RA - DRp)
A 2pRy DRA2

, L T(Ra)- T(Ra- DR,)

R DR,

1 dT(Ryp)
3/,3/, 3 il
/4&,\@/6@ Ry dR, .

Then taking different Ry enables to construct k,(R,) as a quadratic function, for

example.

In belt model also centrifugal acceleration can be taken into account very simply. If
m is the mass of the entire belt block and w the angular velocity the belt tension is

mw? 2

increased by Ra= mw . Tread pattern disturbs the constancy of mass density in

2pRp 2p
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circumferential direction and small variability in belt tension aong circumference
certainly contributesto tire vibrations at high speeds. Hence, transversal grooves aso if
distributed irregularly in tread pattern [46] may turn to a source of tire noise emissions.
As mentioned above, high circumferential stiffness is a characteristic property of
belt of radia tire. So, in asimplified way, the belt may be considered to be inextensible
longitudinally. The circumferential component of the strain tensor [47] isthen

and, because r>0, one gets a very important relationship between the radial and

circumferential components of belt displacement [42]:
v
=_ el
Thus, the variable u is eliminated and the belt model can be described by two
components of deflection, v and w.

2
v , V" instead of L\Zl etc.
fif qIf

If energy losses are negligible, loading aradial tire rotating with angular velocity w
induces a deflection for which, according to the Hamilton's principle [44], the

functiona

We will shortly write V' instead of

1]
S: o (Ekm - Epot) dt
to
attains its stationary value. Here Eyn, is the kinetic energy,
2 p

Eyin = ”jl” O [Ra—V 2+ (v )2+ (w ") df .
p
-p
The potential energy
Ry © . .
B = 2 O [QUW V. V) + Qulw, W, w )] df
-p

where

.2
Qv v, vy =T V82 w2+ k2
Ra o
NG o’
. 0
72: +T alivz + kWVVZ,
RA & Ra g
and D isthe transversal (axial) stiffness of the belt [42].
Obviously, Smay be decomposed into two independent summands,

S=8+3,

Qu(w, W', w’) =D
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where

p I’Tl\Nz

S = (‘)(*[(RA V)P + (V)] - AQv(VV V7)) df,
-p

P w2
Sw= 0(7(\,\,) Qw(WW w’))df .

Both the functionals S, and S, are of the same type
b

O F(x ¥(¥, Yy (%), Y (%)) dx.

a

The corresponding Euler-Poisson equation sounds [9]

d> &&F ¢ dafFo  aF o _

dx? g‘ﬂy% gﬂy% gﬂy 2
Putting F =S and F = S, successively yields two linear differential equations of the
fourth order of the same type (basic equation of belt model)

Y+ Ay +By=0.

The coefficients A and B are displayed in the following table.

v w

A 2pR3k, - MW2R, _ 2pRAT
2pT - MW?R, 2pD - MW?R3

5 2pRaky 2pRakuy
2pT - mvszA 2pD - mvv2R3A

In static or quasistatic deflections w = 0, obviously, and A, B become simpler.

Genera solution of homogeneous equation

Y +AY +By=0
may be presented as a linear combination of its four linearly independent fundamental
solutions [9,45]
w(f)=ex k=1, .. 4
where ay are roots of the corresponding characteristic equation [9,45]
a'+Aa’+B=0.

The numbers ax are real or complex, dependent on A and B. Thus, the general

solution may aso be written as alinear combination of hyperbolic functions sinh af,
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cosh af, trigonometric functionssin af, cosaf, and ther products
Y(f) = Coya(f) + Cayaf) + Caya(f) + Caya(f) .

Loaded
equator

| \ ~Unloaded
7 C— , — equator
A L s
‘ Contact

Figure 5.2 — A sketch of boundary conditionsin vertical loading.

The four unknown constants are to be found from boundary conditions in the
considered case of loading. The case of vertically loaded radial tire is illustrated in
Figure 5.2, others are more schematically shown in Figure 5.3.

Solutions with respect to the inflation pressure and tire geometry (belt tension and
stiffness coefficients of the belt support) are mostly set up from the functions as
follows:

Even solutions: cosh af cos bf and sinhaf sinbf ,
Odd solutions: cosh af sin bf and sinhaf cosbf .
For more details on computing a and b from A and B see [42].

Boundary conditions in the mentioned main types of loading are summarized up in

the following table.

Remark. The conditions below can be adopted to a more general case of the cylindrical
support coaxial with the tire. The plane corresponds then to the infinite radius of
cylinder.
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Loading Solution Boundary and length conditions
V(@) +Ra— A" -,
cosq
: . Ra - Uy) Sin
Radlgl Even Y (q)—( A g) 90,
(Verticd) cos q
q
—pRa—(Ra—Up) tanq + §-/(Ra - V92 +(v§2 dq=0.
0
. . . V(g —V/Ra) = V(=0 —Vp/Ra) = Vp,
Circumferential V/(Q=Vy/R) =V (=g ~v/Re) = 0.
Lateral w(p) =W, ,
(Axid) Bven () =0.
Torsiona Odd Wp) =0,

w'(p) = (Ra—Uuy) sind, wheredisthetorsion angle.

o %]
~, /Q'Ei
Loaded
equator
. Unloaded
U, " equator
A il e >
_, Contact
= length ~ v Axial deflection of the belt

Circumferential deflection

~

————

e-—‘

Ground projection of tire equator in torsional deflection.

Figure 5.3 — lllustrations of boundary conditions in static circumferential, axial and torsional
deflections.
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If the solution w(f), wi(f) is found for given deflections x, k = 1, ..., n, the
corresponding energy E(x) can be obtained by integration. Fitting the points (X, E(x))
by a simple function facilitates computing the load. It is advantageous, of course, to
choose the regression function (regression polynomial P) as simple as possible. We
have used the following polynomial of the 4™ order

P(X) = X¥(ay + axx + agx®).
Principally, three fitting polynomials Py, P,, P, would be constructed for a general

210
deflection x = Cv: . Theforceisthen
&y

o, (uvyw) o  a8R,(u,v,w)/u o
F(x) = SF,(u,v,w) = = SR, (u,v,w) /v ~.
Fu (U, V, W) 5 gﬂPW(u,v,w)/ﬂWE,

The belt model of the reinforced part aone (without tread layer) gives a very good
approximation of vertical load-deflection curve of real radial tire. The tread layer is
namely much stiffer in radial direction than the pneumatic part of tire, so the influence
of tread in its serial connection to the reinforced part is small (Figure 5.4). But in
tangential loadings the shear contribution of the tread to the tangential deflections is
considerable.

We will prefer writing (Fg, Fc, F,) instead of (F,, Fy, Fw) asarule.

80

70 /
Reinforced part/

60 /

50 /

40
Reinforced part
+ tread

30 /

20 /

10

0 10 20 30 40 50 60

Radial force F, kN

Radial deflection u, mm

Figure 5.4 — Radial load-deflection curvesin 445/65R22.5 truck tire (infl. pressure p = 800kPa).
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5.3 Tangential L oadings

Tangential forces are transmitted by friction. So the tire can transfer tangential
loadings only if it isloaded vertically (radially). Values of tangential forces are limited
by the coefficient of friction in due direction.

The coefficient of friction depends, besides the interface of interfacing bodies, i.e.
tread compound and road surface, on real dimensions of real contact area and contact
pressure. In microscopic view the interfacing surfaces are of fractal nature [48]. Their
contact behavior depends on temperature, skid velocity etc. Concisely, friction is a
very complex phenomenon connected always with alot of uncertainty [49].

=
Figure 5.5 — Rubber plate under vertical and lateral loading.

As well known (see e.g. [7]) the coefficient of friction is a decreasing function of
normal pressure. We verified it experimentally with a low paraleepiped (plate) of
tread rubber vulcanized onto a steel plate fixed in ajig on static tire tester. Its base size
corresponded to a common car tire patch. First a vertical load was applied and then the
supporting steel plate was hauled horizontally. In spite of its small height the rubber
plate was deformed considerably in the way shown in Figure 5.5. The ratios m of
tangential vs. vertical force are presented in Figure 5.6.

1.6

(@)
1.4 4 m= 58.258703-0.67791
R?=0.93190
e 121
<
9
e 17
S /@)
2 0.8 ——— "
s 8
2 06
©
[«]
O 04
0.2
0 ‘ ‘ ‘ ‘
200 300 400 500 600 700

Normal contact presure s, kPa

Figure 5.6 — Drop of the rubber/steel coefficient of friction with increasing normal pressure.
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The tread pattern is a source of anisotropy in tire tread layer. Tread blocks may be
compressed and bent so much that the vertical load is transmitted just by frontal edges
of the tread pattern blocks. This way the normal pressure s in contact area increases
significantly while the coefficient of friction mdrops. When the shear tangential stress
in contact exceeds the value corresponding ns, the tread block starts to slip. Thus, the
contact area is in a simplified way decomposed in adhesion and dliding zone. In the
adhesion zone there are no tangential movements of tread surface due to the condition

t<ns.
The boundary of the adhesion zone is determined by the equality t = ns. The
remainder of contact area is called slip zone and, in a hypothetically ideal case, it
would hold theret = ns. But, as well known, to start the movement of aweighty body
on a support needs a greater force than to keep on its movement. This phenomenon is
used in ABS systemsin daily practice. Therefore, inthe dlip zoneitist < ns aswell.

An example of static lateral load-deflection curve is shown in Figure 5.7. Lateral
displacements of the surface of tread layer become substantially greater than those in
radial directions due to considerable bending and stretching tread blocks.

N
o

mF r _
Reinforced par
> 30 _—
x
8 Reinforced part
N—r
w + Tread layer
o 20
2
S
<
2 10
0 T T T T T
0 10 20 30 40 50 60

Axial deflection W, mm

Figure 5.7 — Static lateral load-deflection curve of 445/65R22.5 truck tire
(p = 800kPa, Fgr = 54kN, m= 0.7).

The case of circumferential load can be analyzed in an analogous way [42].

Lateral forces on tires of a vehicle arise due to the support (road) transversal slope,
due to latera wind, cornering etc. Axial forces on tire are compensated by angular
deviation of the wheel plane from the direction of movement, i.e. by cornering.
Cornering radial tire was dealt with in [43].
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If the plane of wheel deviates from the instant direction of wheel movement by an
angle d (dlip angle) an axia force FAd), i.e. in the direction of tire revolution axis z,
arises as a resultant of axial stressest in contact area A. The distance t between its
point of action and geometric center of contact s, of verticaly loaded tire is called the
pneumatic trail. Those quantities are given by the following equations

F= @ t(sw; Fz 1) dA(s, W),
A
t= 1 @ (5—%0) t(s, w; F5 t) dA(s, w),
F, A
where sisthe circumferential and w the axial coordinate in the contact area A.

L,

Planar support.

Cylindrical segment,
Ry = 770mm.

Figure 5.8 — Contact areas in 15R22.5 tire. Inflation pressure p = 800kPa, vertical load 49kN.
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In radia tires the contact area is almost rectangular, A = WpxLp (Figure 5.8).
Supposing t constant in axial direction (or substituting it by the mean value across the
contact area) the double integration over the area A can be reduced to the single one
[9]. Then the following system of two nonlinear equations is obtained:

Lp

.
Fl(an t) 0 FZ - Wp ét(S, Fz,t) ds=0 |
|

W y ©
Fo(F, )0 t- P &(s- s) t(SF,,t)ds=0 ¢
F, o |

An example of solution this system is presented in Figure 5.10.

20

Pneumatic trail t, mm

10 A

0 5 10 15 20 25 30 35
Lateral force F ,, kN

Figure 5.9 — Solution of the system (S) in 445/65R22.5 truck tire for coefficient of friction m= 0.7,
inflation pressure p = 800kPa and radial load Fr= 54kN.

The lateral force F; acting in the direction of tire revolution axis z is the first main
characteristics of cornering, the self-aligning torque, M, = F..t, is the second one.
Substituting t by M in Figure 5.9 gives the so called Gough'’s plot [7,8].

Most frequently, however, the functions F,(d) and M/(d) are plotted separately, like

in Figures 5.10, 5.11. The derivative C;jd FAO) defines initial cornering stiffness. Also

; M4(0) isimportant because the slip angle d in usual traffic conditions on highway

issmall. More details can be found in [42,43].
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Figure 5.10 — Lateral force in dependence on dlip anglein 445/65R22.5 tire
( p = 800kPa, Fr= 54kN, m= 0.7).
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Figure 5.11 — Self-aligning torque in dependence on dlip angle in 445/65R22.5 tire
(p = 800kPa, Fr= 54kN, m= 0.7).
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5.4 Verification of the Belt Mode

Confrontation of theoretical predictions with experimental results is a necessary part of
each theoreticad work connected with reality. During severa years enough
experimental data were collected and parts of them were published in quoted papers,
e.g. [42,43,50]. Here severa other results are presented while tires for measurements

were taken rather occasionally.

60
=
kN Planar support

50

40 50 60
u, mm
Figure 5.12 — Satic radial load-deflection curves of belt model at various inflation pressures vs.

corresponding experimental pointsin 15R22.5 tire on flat support. The predicted curves
are drawn as continuous thick lines, the dotted lines show 95% confidence limits.
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For detailed testing radial |oad-deflection curves on flat support and a cylindrical
segment with radius 770mm the 15R22.5 super low profile truck tire (with aspect ratio
0.65) was chosen. Figure 5.12 shows the case of planar support, the model curves

computed for cylindrical surface confronted with measurement on cylindrical segment
of 770mm radius arein Figure 5.13.

Cylindrica support,
F,, kN| R=770mm

50

800kP,

40

30

20

40 50 60
i, mm

Figure 5.13 — Satic radial load-deflection curves of belt model at various inflation pressures vs.
corresponding experimental pointsin 15R22.5 tire on cylindrical segment of 770mm radius.

The continuous thick lines belong to predicted curves, the dotted lines are borders of 95%
confidence band.
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In a smaller truck tire, 295/80R22.5, the static load-deflection curves on planar
support and those on the roadwheel (D = 2m) at the speed of 100km/h are shown in
Figure 5.14. The centrifugal acceleration changes the carcass meridian and reduces
radial stiffness of the belt support (k,) but on the other hand the belt tension (T) is
increased. At the same time the stiffness of the tread rubber decreases due to the
temperature increase. These antinomy moderates the expected changes of tire stiffness
at higher speeds.

50 ——
Planar .
F R kN support, /.'. .,'
v=(_ J .
adwheel
=2m,
= 100km/h
0 10 20 30 40 50 60

u, mm

Figure 5.14 — Radial load-deflection curves of belt model vs. corresponding experimental pointsin
295/80R22.5 tire. The predicted curves are drawn as continuous thick lines, the dotted lines
belong to 95% confidence limits.
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The following Table presents laboratory measurements in 295/80R22.5 on a 2m-
roadwheel at several speeds. Small variability disables to compare the results

graphically.

F. kN v =50km/h v = 100km/h v = 150km/h
experiment  model experiment  model experiment  model

3 50 44 4.63 47 40 4,53 41 34 431
10 149 145 1444 143 139 1417 13.7 131 1356
15 214 210 2092 20.6 203 20.59 199 195 19.78
20 271 268 27.06 26.2 261 26.70 254 251 2573
25 328 326 3291 320 319 3253 311 309 3144
30 384 382 3849 375 373 3812 365 363 36.93
35 440 440 4384 432 431 4348 419 420 4223
40 494 49.2 4897 486 484 4864 474 472 4734

In computing tangential forces one needs to know the contact length quite exactly.
The comparison of predicted contact lengths to the measured ones is shown in the
following Figures 5.15 and 5.16.

400
R? = 0.9553

B Plane //'
€ 300 +— © Drum, R770mm
S
< R%2 = 0.9711
(@]
=
<
= @)
& 200 /
=
3
° (@) |
(D]
©
2
= 100 - (@)

O T T
0 100 200 300 400

Measured contact length, mm

Figure 5.15 — Contact lengthsin 15R22.5 tire in radial loading.
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Tire 15R22.5

(800kPa, 49.033kN) —I
(800kPa, 39.227kN) —Il

. [ [

(800kPa, 29.420kN) _Il—I
. \ \

(800kPa, 19.613kN)

O Plane, prediction

(800kPa, 9.807kN) m Plane, measurement
R @ Drum R=770mm, pred.

B Drum R=770mm, meas.

(800kPa, 40.452kN)

|

(600kPa, 30.646kN)

(400kPa, 20.839kN)

——

(200kPa, 11.032kN)

1 \

n \

(400kPa, 39.227kN)
(400kPa, 19.613kN) —|

(400kPa, 9.807kN) —
|—!—!_I

0 50 100 150 200 250 300 350 400
Contact length, mm

(400kPa, 49.033kN)

Conditions (inflation pressure P, vertical load FR)

Figure 5.16 — Comparison of contact lengthsin 15R22.5 tirein radial loading.

Some comparison of computed results with experimental data for circumferential
and lateral loadings can be found in [42]. It is necessary to say that the measuring
methods of that time were not very perfect from today’ s point of view. The same could
be said on cornering measurements. But this matter cannot be discussed here.

Figure 5.17 illustrates dependence of lateral force and self-aligning torque on the
dlip anglein three car tires.
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Lateral force F,
kN

0 p i L L. . 1 H
0 1 2 3 4 5 6 7 8

Self-aligningtorque M,
N.m
70

60

50

40

30

20

10

Slip angle d, deg.

Figure 5.17 — Measurement vs. prediction in lateral force F, and self-aligning torque M, in car tires.
1. 165/70R13, p=200kPa, Fr= 3.53kN, speedv = 50knvh,
2. 175/70HR13, p=230kPa, Fgr= 5.0kN, speed v =100knvh (exp. data from Prof. F. VIk, Brno),
3.185/70R14, p=200kPa, Fgr= 4.0kN, speedv= 50km/h (exp. data from Prof. F. VIk, Brno).

|
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6 SOME APPLICATIONSOF THE BELT MODEL

Pneumatic tireis a dynamical system not only in respect to external forces and torques
but also itself dueto its structure. The tensioned belt on elastic foundation and stressed
carcass represent analogues of beams, strings and membranes. Moreover, the tire
cavity is a resonator. All this is very important in attempts to reduce vibrations
connected to tires. The belt model, however, istoo simple to give complete answers to
such complex questions. Nevertheless, there are some cases, in which it can be applied
successfully.

6.1 Wheel Oscillations
a) Radial Oscillations
Chapter 5 started with the equation

d’x 1
a2 m
to describe vertical motion of the wheel. Now the elastic force F(u) can be supposed
known, so it remains necessary to say something about the loss function G. Figure 6.1

shows, however, that oscillations of revolving wheel are damped negligibly [41]. Thus,

dx
(F() + G(x, a))

G(u, C(ijl:) » 0.

In the neighborhood of the equilibrium position Uy corresponding to the static force
Fo the function F may be linearized,
F(u) =Fo—k (u—up), k=dF(ug)/du » [F(ugth) — F(ug—h)]/(2h).
Then one obtains the harmonic oscillator

2
d—g + Eu: l(Fo+kuo):const.
dt m m

— Static

B S A W— w— =

Displacement U, mm

Figure 6.1 — Radial wheel oscillations in static case and revolving.
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The frequency of its oscillationsis
1 |k

Similar relation served for experimental establishing the “dynamical” stiffness of tires

by frequency of convenient experimental system oscillations [40,41]. Predictions of

f

corresponding slopes ZFof the belt model vs. experimental results are shown in
u

Figure 6.2.
250

£
Z 200 - | 185/65 HR 14 —
~ /O
2 150 ;ﬁ%
B 100 o— |155 SR 14
S Model
S — EXper.
§ 50 - P
o

0 :

120 140 160 180 200 220 240 260

Inflation pressure p, kPa

Figure 6.2 — Radial dynamical stiffnessin two car tires.

If C denotes the effective rolling circumference C = 2pRg; of the tire then

is the frequency of tire revolution (Hz). This may become the source of resonance
vibrations caused by jth harmonic of uniformity disturbance, if f=f;, i.e. at the speed

v,-:cl_f:R?“\F, j=1,2, ...
2jp Im ] m

The most important is the highest speed. It belongs to the first harmonic

V]_:Reﬁ\/?.
m

Example. Figure 6.2 for the inflation pressure p = 200kPa gives the following
estimates:

Tire k, KN/m m, kg Reff, M v, km/h
155R14 155 13 0.28 110
185/65R14 180 15 0.31 122

Remark. When atractor runs fast on the plane road |ow resonance speed due to low
inflation pressure and thereby low stiffness of tires may cause problems.
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b) Torsional (Directional) Oscillations
Let us reduce the wheel with pneumatic tire to a homogeneous disk of the same radius

Ra and moment of inertia with respect to itsradial axis J» ? Ra?, Where mis the mass

of the wheel.
The equation of movement is
2
J E :_Mz(d) » — dMZ(O) d’
dt? d
i.e
2
3 d<d N dMZ(O)d»O.
dt? dd
From thisit follows that the frequency of directional vibrations of the wheel is
dm,(0)
1 dd
fai — Hz) .
dir » 2p 3 (H2)
The critical speed is approximately
1dM,(0
vi=Ra 3 djj( ) = 2pRa fair

Example. For the tires from the end of the foregoing section one obtains

M, (0
T”_e dil( ) ] m! RA1 ‘]1 fdil‘) Vl!
kg m kgm? Hz km/h
N.m
155R14 2120 13 0.29 0.27 14.0 92
185/65R14 2728 15 0.31 0.36 13.9 97

Remark. The parts connected to the wheel may represent much larger mass. However,
amore detailed analysis belongs rather to mechanics of vehicle.

6.2 Stiff Belt Oscillations

The belt and tread belt block is a relatively autonomous massive part of the radia tire
that may be excited to its own oscillations in severa directions. For the sake of
simplicity the belt is supposed stiff and oscillating as a cylindrical ring. Further, it will
be written ainstead of Ra [33,51].
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a) Radial Oscillations

It is seen in Figure 6.3 that the radial
and circumferential displacements u
and v with respect to the fixed rim are

ux, f) »xsinf,

v(x, f) » x cosf.
Potential energy corresponding to the
displacement x is then

2p

B> 2 O [kitP 4k ac
0

p/2
=ad () [kesin’f +k, cosf].
-p/2
Figure 6.3 — Radial displacement of the stiff belt. Because
p/2 p/2
O smfdf = ¢ cos’f df —2
-p/2 -p/2
one obtains

Epot » g ak, + k) X2

The mass of sidewalls can be neglected. If mis the mass of the belt block, then the
kinetic energy of the block is

Considering the belt system conservative enables to use the Hamilton's principle: the
displacement x(t) gives the functional

t t 2
dx 1
O L =) dt=¢) (En—Epo) dt= = [mg—— —paxXi(k, +k)]dt
o dt 0 2 0 edt g
a stationary value. The Euler-Lagrange equation [9] in this ssimple case yields
o, d S d2
- =0=pakgtk)x+m-—
ﬂX ﬂagyf__ pa (Ku + ky) 4t2
edt 7]

The frequency corresponding to this linear harmonic oscillator is

frag = © 4/7a(k“ k) (Hz) .
2 pm
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b) Torsional (Circumferential) Oscillations

Figure 6.4 shows that circumferential
displacements v are the same along the whole
circumference

v(f, t) = v(t).
Corresponding potential energy is

1%
Epot = 5 O kv adf = pak,V?,

kinetic energy
m aslv 62
Bin= - ¢+
2 édtg

Figure 6.4 — Circunmferential displacement
of the tiff belt.

Considering the belt system conservative enables to use the Lagrange function

adv maeivo ko V2

L(v, —)=—¢c—= —pa
V)= 2 Say P
and equation
2
ﬂL L —O:pak\,v+mM.
v ﬂa@ﬂ_ dt?
edtz

Thisyields the eigenfrequency of circumferential vibrations

1:(:irc: i \/Zpakv = \/ Y (H )
2p m 2pm

c) Lateral (Axial) Oscillations

Axisymmetric Oscillations

Likeinthecaseb)itisw(f, t) = w(t) and Epot=pakw\/\/2, Ekinzr;g"; 9 and
t o
Esym: Epot"'Ekin:paka\/2 m(;‘;“;9 = const.
t g
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We _.Wﬁ Differentiation of this equation with
respect to timet gives
2
[ 2pa kyw + md—w] d—w =0,
dt?
) i.e. either C;\f[v = 0 and then w = const.
is a static displacement or
o- - [} -
0 spakav+m W =g
pakw+m——- =0,
> - dt2
which yields
2pak,,
Q flaa= — P \/ (H )
2p m 2pm
Figure 6.5 — Axisymmetric displacement
Antisymmetric Oscillations
We W In this case (Figure 6.6)
1%
wsing  Epa= 5 O koW (t) sin’f adf
o
= pakavz(t)/2
2p
Ein= © 0 8@1’"9 adf
2 0 edt g
0 P4
m '\ 2 2
= — — (w(t)]“sinf) df
2 (()) [ Olt( (] )
_ men(t) o
48 dt 5
Now
. . o 1
Figure 6.6 — Antisymmetric displacement Epot + Exin = 5 Esym

and the equation of movement as well
as the frequency remain the same as in the axisymmetric case (Figure 6.5). But the
antisymmetric oscillations (Figure 6.6) are preferable due to lower total energy.

Examples. In 165/70R13 tire we have a = 0.2685m, m = 2kg, p = 200kPa. The
coefficients of stiffness and frequencies of different vibration modes are as follows:
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v = 0km/h v = 100kmv/h
k., Pa 474 845 378675
k., Pa 322523 318536
ke, P2 77 662 82581
fraa HZ 923 86.3
fores HZ 83.0 82.6
fiot, HZ 40.7 420

In 235/40R18 tire a = 0.3095m, m = 5.7kg, p = 200kPa. The coefficients of stiffness
and frequencies of different vibration modes are listed in the following table:

v = 0kmvh v = 120km/h
k., Pa 493020 460 834
k., Pa 484999 480 155
ke, P2 116 309 124 849
fraa, HZ 65.0 63.8
fore, HZ 64.7 64.4
fiot, HZ 317 329

6.3 Incompatibility of Conditions on Road and Roadwhed
Ignoring the obvious difference between road conditions and laboratory conditions
concerning the heat transfer and energy dissipation one could reduce the problem of
equivaent conditions to setting up equal radial deflection, contact pressure and contact
length. Radial deflection is namely connected to carcass and belt deflections, contact
pressure is joined with tread rubber compression and hysteresis, contact length mainly
to shear stress and dlipsin circumferentia direction. The following example shows that
equivaent load and inflation pressure do not exist generally. Thus, any simulation of
road regime through testing on awheel road is necessarily unrealistic.

Let us consider the 295/80R22.5 tire, for example, with inflation pressure
p = 850kPa. In static condition on planar support the vertical load Fg = 35kN produces
radial deflection uy = 35.8mm, contact length Lpy = 232mm (Figure 5.9) and average
contact pressure pmy = 948kPa. Preserving those tree quantities u, Lp, pm also on a
roadwheel would require that the following three planar curves

u(p, Fr) = Uy, Lp(p, FR)=Lpy, Pm(P; FR) = Pmy

intersect in one single point. Figure 6.7 shows these curves in the case of the
considered 295/80R22.5 tire on the 2m roadwhese!.

An analogous picture for the 165/70R13 car tire was published in [52]. It is possible
to consider more quantities, e.g. the maximum circumferential change of belt curvature
represented by the carcass equator curvature at the ends of contact area.
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Figure 6.7 — Three conditions of planar contact transferred onto 2m roadwheel in 295/80R22.5 tire.

Remark. A correct formulation of the problem should be like this: what conditions in
laboratory testing on drums are minimizing the differences in tire response
simultaneously. So far namely only the most obvious radia deflection has been
respected.

6.4 Optimization Problems

First applications of mathematica models are usualy connected with attempts for
improvements and finding more suitable solutions of various problems in design and
technology. The possibility to predict radial deflections of radia tires led to
considerations on optimization (based on the theory of games) even before the belt
model had been developed [53]. Some optimization examples were published also in
[42,43].

Tire production necessarily follows economical interest, which, in avery ssmplified
view, means attaining the maximum profit from a set of available raw materias. If a
tireis run on highways exclusively one may suppose the tire will be exposed to smaller
irregularities and deflections than somewhere off the road. So it may be designed as it
would almost never be deflected more than, say, 50mm. This condition may be well
fulfilled also with a tire whose total profile is just a bit higher, e.g. 100mm. Higher
cross sections supply higher ride comfort and damping capacity but on the other side
they can need higher material consumption.
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Such conclusions, however, collide with the necessity to amortize the existing
machinery in a maximum measure and in shortest time. Implementations of new ideas
require investments and always bring problems. Moreover the tire and rim create one
unit that must fit the system of suspension etc. Nevertheless, wide cylindrical tires with
low aspect ratios on today’ s vehicles show that the rational view has found its place.

The influence of tire geometry on some of tire properties will be shown on the case
of preserving the carcass cord length and equator radius. The diameter and width of the
rim will be increased while the bead area profile will remain the same. Such changes of
the main rim dimensions will then be constricted by the condition that the tangent
angle q(rg) in the bead point (Figure 4.16) is approximately 46°.

160
140 7
Z, mm
120 o\ 5
100 /‘/’ﬁ——\\\
80
60 -
Aspect ratio
£ T —=0==124
a7 8
20 - —ty=55
o 32
0 T T T T T T T

140 160 180 200 220 240 260 280 300
I, mm

Figure 6.8 — Several meridional curves for fixed equator radius and meridional length.

The meridian curve parameters are chosen as follows:
§ equator radius Ra =300mm,
§ meridian length |ag = 200mm,
§ bead areaheight rg— Dyin/2 » 42mm.
Other parameters are listed in the following table.
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‘Rim’, I'g, Zs, Rns q(rg), W, Aspect Ra—g, VolumeV,
in mm mm mm ° mm ratio, % mm dm?
3x10 150 37 100 45.7 71.0 124 150 24.5
6x12 175 75 250 43.3 98.7 78 125 319
7x13 187 87 400 44.8 108.9 66 113 333
8x14 200 100 600 46.5 119.8 55 100 339
9x15 213 113 900 48.0 130.6 46 87 334
10x16 225 125 1300 49.2 140.4 38 75 32.1
11x17 237 137 5000 46.7 149.2 32 63 30.2

Table 6.4.1 — Geometric parameters of different cross-sections.

Force parameters of the corresponding belt models at the same inflation pressure
p = 200kPa and static vertical load Fr = 5884N (600kgf) are summarized up in
Table 6.4.2.

‘rim’, T, Ku, k,, Ko u, Lp, Radial load-deflection curves Fg(u),
in kN MPa MPa MPa mm mm N

3x10 0284 0610 0190 0112 39.81 266 —0.02073u® + 3.53773u° + 39.826u
6x12 5828 0676 0218 0133 27.66 155 —0.00536u° + 2.59443u° + 145.028u
7x13 8173 0610 0224 0129 2634 138 —0.00254u° + 2.123610° + 169.209u
8x14 10728 0555 0.234 0.124 2486 124 —0.00111u® + 1.80099u° + 192.566u
ox15 13233 0506 0249 0.121 2354 113 -0.00037u® + 1.56089u° + 213.431u
10x16 15533 0468 0294 0.117 2216 105 -0.00058u° + 1.44423u° + 233.851u
11x17 17.435 0436 0291 0.136 2140 99 —0.00340u° + 1.45014u° + 245.441u

Table 6.4.2 — Satic force parametersin cross-section variants of Table 6.4.1.

As soon as radia |oad-deflection curves (severa of them are shown in Figure 6.9)
and corresponding contact lengths are determined (Figure 6.10) computations of
tangential forces and cornering can be performed. Some results are shown in
Figure 6.10.

Figure 6.11 demonstrates that tires with low aspect ratios have shorter contact
length. Thisis advantageous in respect to circumferential displacements in contact area
and wear rate. However, it is disadvantageous on wet road due to short time needed for
running the distance between front and rear edge of contact length and consequentially
lower critical speed for hydroplaning (Chapter 9).
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Figure 6.9 — Some of radial load-deflection curves from Table 6.4.2.
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Figure 6.10 — Changes of radial, lateral and cornering stiffnessin tire variants from Table 6.4.1.
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Figure 6.11 — Contact lengths under the same vertical load Fg = 5.887kN.

In connection with the contact length and energy losses it is aso very interesting to
consider radial displacements of the carcass equator along the circumference.
Figure 6.12 shows the functions u(f ) for some of variants of Table 6.4.1. It can be seen
that the decreasing aspect ratio smoothes the equator curve, i.e. reduces its curvature
and loca bending in the free part of the belt. This can reduce the bending hysteresis
but, on the other hand, Table 6.4.1 shows increase of the total belt tension and, due to
wider belt plies, greater interlaminar shear stress too.

-10 -

Aspect ratio

Radial displacement U, mm

-15 A —r— 124
_20 i
-25

\/

Figure 6.12 — Radial displacements of equator in three tire variants with different aspect ratios for the
same radial deflection of 30mm.
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Also the following very simplified economical reasoning speaks in favor of low

profiletires. Let ustake the sum
S=lpe (Ra+ Diin/2) + WRa
as arepresentative of material consumption. The vertical load corresponding to afixed
radial deflection, e.g. ue = 22mm (Table 6.4.2), be an indicator of exploitation. The
fraction (specific loading capacity)
e= l:R (ue)
S

isthen ameasure for the material efficiency (Figure 6.13).

; ——

5 ~_

Material efficiency e, N/cm?

20 30 40 50 60 70 80
Aspect ratio, %

Figure 6.13 — Material loading efficiency increases with decreasing aspect ratio.

This very superficia consideration would require many improvements in various
directions to be taken as serious and relevant. Namely, the unit N/cm? says little about
real materia consumption and should be substituted by something more convenient.

Nevertheless, even such consideration indicates that positive impacts may
overwhelm negative ones. Worse damping, increased harshness or inclination to
hydroplaning must be kept on acceptable levels by other means — rubber properties.

6.5 Tread Thicknessand Modulusin Cornering

Tread pattern provides flexibility to tread rubber blocks and plays a very important role
in tire response to tangential loading. Rubber modulus under the same conditions
depends on rubber blend composition. It changes during the tire life and its instant
values depend on temperature (Chapter 2). Groove depths decrease due to tread wear.
Higher modulus E and smaller groove depth hy reduce tangential mobility of tread
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blocks. Their influence on cornering characteristics is illustrated in the following
Figures 6.14, 6.15. Interestingly, almost the same cornering force and torque are
produced in E = 5SMPa, hy= 7mm and E = 3MPa, hy = 2mm. As arule, however, E is
increased in tread rubber aging.

—— E=5MPa, hg=7mm

Lateral force Fz, kN

—B— E=5MPa, hg=2mmj—
—— E=3MPa, hg=7mm

—0— E=3MPa, hg=2mm

0 2 4 6 8 10 12
Slip angle d, deg

Figure 6.14 — Computed lateral force in 235/40R18 tire for two different tread rubber moduli and
groove depths. Planar support, v = 90 knvh, p = 200kPa, Fr = 4.5kN.
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Figure 6.15 — Computed aligning torque in 235/40R18 tire for two different tread rubber moduli and
groove depths. Planar support, v = 90 knvh, p = 200kPa, Fr = 4.5kN.
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7/ ROLLING RESISTANCE

Every body interacts with its environment in such a way that some local energy
equilibrium is approached. In rolling loaded tire a part of its “ordered energy” is
transferred into local acceleration of the surrounding mass. Dissipative mechanisms
produce heat, noise, turbulence of air or displacements of the mass covering the ground
such as water, mud, snow, dust, stones etc. But through friction, material hysteresis and
heat transfer also internal energy represented by temperature is changed. The choice of
materials and the construction of the tire wall and tread pattern are the only areas,
where tire producers can assert their effort to reduce energy lossesin rolling tire.

If the tire is rolling with minimum transfer of its kinetic energy to its neighborhood,
for example on planar, smooth highway or even better on atest machine in laboratory,
its energy loss is practically equal to the heat produced due to stress/strain changes and
hysteresis in its wall and tangential dlips of tread. Hysteresis in linear materias is
proportiona to the square of the strain or stress amplitude. Having estimated elastic
and hysteresis parameters of tire materias, one can try to solve the problem of
determining the strain energy lossin tire wall at given external load of tire. Nowadays
the use of some FEM software is the most common way to solve this problem.

When tire materia or construction is changed and a new tire is made, it is necessary
to examine the expected effect experimentaly. The simplest way for determining
rolling losses is to measure the rolling resistance of the tire directly. Tire rolling
resistance on the background of reduction of total energy losses of tires is excellently
summarized in [8] or the paper of SCHURING, D. J. — FUTAMURA, S., Rubber Chem.
Technal., Vol. 63, (1990), p. 315. After a significant reduction of rolling resistance due to
radial construction and material improvements the need of tools for evaluation and
distinguishing small differences in measured data appeared. The goa of the following
sections is to show proper analytical expressions for the rolling resistance coefficient
as functions of test condition parameters.

Friction

Friction is a very complex way of interaction of bodies or fluids and no definitive,
generdly valid conclusions on it have been formulated so far. It is influenced by many
factors, e.g. by smoothness of the interfacing surfaces of bodies, by temperature,
normal pressure, by vibrations and thus by the velocity of movement, etc.

Most frequently the Coulomb friction model is used. It claims that the resistance R
against movement is proportional to the load component parallel with the normal of the
supporting surface and its direction is opposite to the relative velocity v, i.e.

=—nkv/pV.
Thus, in one-dimensional or scalar case,
R=—sign(v)nF 2 0O
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The quantity
m= H 30
F

is called coefficient of friction. Let us consider a simple example for illustration.

An axisymmetric body, such as cylinder or disk, characterized by the outer radius a
and moment of inertia J, revolving with a circumferential velocity v is slowed down by
friction which can be represented by a circumferential brake. The movement of the
body in relation to its fixed axis of rotation can be described by one generalized
variable, namely the angle f between a fixed direction, e.g. the vertical one, and radius
vector of afixed point on the circumference. Let the initial value at the instant t = 0 be
zero, f(0) =0. Kinetic energy of the body at thetimetis

.2
2080wy,
2 edt g 2
where w is the angular velocity.
The dissipated energy is equal to the work of the friction force during the time t
t t
W) = g Rvdt = (‘eraidt = naf (t).
0 0 dt
Dueto law of conservation of energy

Ewin(t) =

2
J J 0)a
En(t) + WD) = Ein(0) = = wWA(0) = > 86/( )§
2 2 éeag
Substitution in the left side and differentiation with respect to t give
2
Jj; +nfFa=0. (7.2)
t

This equation can be immediately used in tire rolling resistance measurements.

7.1 Basic Principles of Rolling Resistance M easur ements
1. Sandard dynamometric measurements. To keep the velocity v = aw(t) constant the
torque M = nfa eiminating the rolling resistance moment must be supplied. For

constant angular velocity w(t) the equation (7.1) gives m=

s

2. Recording f(t) or df (t)/dt. For convenient number and distribution of points
(t, T (1)) or (t, df (t)/dt),i =1, 2, ..., n theanglef (t) or angular velocity df (t;)/dt can
be approximated by a regression function, e.g. by a polynomial, which can easily be
differentiated. This method in combination with up-to-date electronics can be used
in improvised facilities for estimating rolling losses in tires (e.g. uncustomary, very
small or extremely big ones).

3. Direct monitoring the tension on a haul device equipped with the measured tire.
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4. Coast-down tests. No specia device is required but, on the other hand, only an
average coefficient M over an time interval can be obtained. Conservation of energy
gives at the instant ts of stop

W(ts) = Exin(0) — Exin(ts).
From this and the above expressions one yields with vo = v(0), s=a f (t)

SR VR V3
a’Fty  2a’Fs
or, inn> 1 steps,
J VK- Vka

ka, k+l = k=0,1, ..., n-1.

a%F te- b
Remark. Practicaly the same equations hold aso for free rolling tires mounted on
massive rims in laboratory tests or in measurements on vehicles. Extensions of moving
systems only increase the number of terms in total kinetic energy expressions. Energy
lossesin all real dynamical systems are influenced by friction in bearings, aerodynamic
turbulence etc. Hence, elimination of these externa losses constitutes the basic
problem in processing rolling resistance data.

Variability of rolling resistance can be demonstrated on the 295/80R22.5 tire run
on the 2m road whedl [51]. The initia inflation pressure was 850kPa and the air
content in the tire was fixed. Vertical load was kept on 34.83kN. The velocity changed
stepwise every five minutes by +10km/h as shown in Figure 7.1.
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|
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0 20 40 60 80 100 120 140 160 180 200
Time, min.

Figure 7.1 — Cyclic changes of speed in 295/80R22.5 tire.

The rolling resistance was measured at the end of each 5-minute-time interval.
Corresponding results are recorded in Figure 7.2. The steep decrease of rolling
resistance coefficient in the beginning of the test is caused by fast increase of both the
tread temperature and inflation pressure. The last branch of the test is marked by
triangles. A tendency to creation of a slim equilibrium loop is obvious.
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Figure 7.3 shows results in two tires 295/80R22.5 for speeds chosen independently
asv =10i (km/h), wherei isarandom number from the set {5, 6, ..., 11, 12}.
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8.5

[ee]

N
3

~

o)
wn

)]

—

e

50 60 70 80 90 100 110 120 130
Speed, km/h

Coeff. of rolling resistance x 1000

on
wn

()]

N
o

Figure 7.2 — Changes of rolling resistance in cyclic setting up the speed shown in Figure 7.1.
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Figure 7.3 — Rolling resistance measured at speeds randomly chosen between 50 and 120knvh.

In order to attain some degree of objectivity in measuring the tire rolling resistance
coefficients mit was necessary to settle obligatory standards like 1SO 9948 or J1269
that should assure reproducibility and comparability of results.
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7.2 Dependence of mon Velocity

A fixed cross-section on the rolling tire circumference is periodicaly deflected.
During arevolution a strain cycle is performed in each meridional section. Depending
on temperature gradient the heat generated due to hysteresis and friction is transferred
from the location of its rise to its neighborhood causing temperature changes.
Hysteresis at constant deflection velocity and the heat rate decrease with temperature
(Chapter 2). The local or average temperature J due to a step increment of speed can
be well approximated by the exponential function

J(t) =Jo+[@e—Jo)(1—e W) asp,
Here the index e relates to an equilibrium state, J(t) ® J. fort ® ¥. In this
transition process the rolling resistance coefficient drops which can be described
roughly as follows

nt) = m+(nfto) ~m) e, b>0,
where n(t) ® m fort® ¥ and misan equilibrium value.

The equilibrium rolling resistance of radia tires changes very little in the common
performance speed range. The approximate constancy of m would imply
proportionality between the energy lost in tires and the distance run.

However, hysteresis depends on strain rate (speed of deflection). At low velocities
the dominant influence belongs to temperature increase, i.e. mis a decreasing function
of velocity. But at high speeds vibration phenomena occur (demonstrated e.g. by the
noise level), the number of strain cycles is multiplied and the stress-strain intensity in
tirewall isincreased. This prevailsthe drop of materia hysteresis.

Because no power is needed to keep a body in rest in stable condition, one could put
m(0) = 0. On the other hand, however, a relatively great power is needed to bring a
body from the state of stable rest to movement. Omitting details we simply assume that

(1) nv) ® ap>0 for v® 0and
(i) m(v) isasmooth function of rolling velocity v in theregion of v> 0.
Thus, n{v) can be approximated by a polynomial
mv) » ag+ arV+ &Vl + ..+ apV", a>0.
The initial decrease of mand its rapid increase at higher speeds due to vibrations
requires at least two other non-zero coefficients.

Linear Regression
Regression is the most common way for finding the coefficients g on the right hand
side of the approximation of n{v) [11]. To maximize degrees of freedom and refine
statistical considerationsit is desirable to reduce the number of g to minimum.

Let us suppose that the mean value of mat a given velocity v can be expressed more
generdly aslinear combination of three independent functions  (f1(v) = 1, fa(Vv), f3(Vv)),
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mv) » by .1+ bofa(v) + bsfs(v) . (7.2)
Let us further assume that some homogeneous values of mare obtained in a series of
m tires according a test plan given as a sequence of pairs of speeds and times
{(v1, t1), ..., (Vn, tn)}. Thusthe function (7.2) shall fit a set
{m:i=1..,nj=1 ., m.
Remark. To assure independence in measurement, the indices i and j, i.e. speed and
time, should be chosen independently. Evidently, such an experiment would be more
complicated. As arule, timest; are chosen as approximately quasi-equilibrium ones. If
time instants t; were random, the variance in the corresponding experiment would
increase considerably. Though this variance would represent the real performance
conditions much better than the quasi-equilibrium conditions do, the sensitivity of such
testing would drop dramatically. Moreover, the time and money consumption would
increase. To reveal small differencesin different tire seriesit is necessary to reduce the
experimental variance as much as possible. This is achieved in praxis by a fixed,
computer controlled testing regime {(t, vi): i =1, ..., n}.
[ ]
Considering values m; obtained at n velocities vi in mtires with random errors g; in
equation (7.2) one gets the following linear regression model

m; = b1+ bzfz(Vi) + b3f3(\/i) + €, i= 1, ..n; ] =1, ... m
or, in matrix form,

m=Xb +e, (7.3)
0o T
b= b, m = E”KAm : e= geﬁ” :
b, gmMmf gerMmE
M 5 e

Here X isan nm x 3 matrix consisting of m blocks
gé fa(vi)  f3(v) @
1 fo(vo) fa(vn)i

each of which corresponds to an individual tire and the design of experiment, b is the

vector of regression coefficients, mis the vector of measured values and e denotes the
vector of errors.

The assumption that all components of the error vector e belong to the same normal
distribution N(0, s2) (homoscedasticity) represents the simplest case.

Multiplying the equation (7.3) by the transposed matrix X' yields the so called
normal equations [11]

X

X"Xb +XTe=X"Xb=X"m ,
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where b is an estimate of the unknown vector b of coefficients. The design of
experiment assures regularity of the matrix X'X. Its inverse V = (X' X)* is called
covariance matrix. Then
b =VX'm
Thevariance s? isestimated by & = &/ (n—3), where
F=Xb-m". (Xb-m

is the sum of squares of residuals, SSR. It can be proved that under the assumptions
concerning e the vector b belongs to the multivariate normal distribution, i.e. by
belongs to N(bj, Vi s2) and its variance can be estimated by V;; s> [11].

The matrix V aso defines the confidence belts for individual values of n(v) and for
the whole regression polynomial at a chosen significance level a [11].

For m > 1 adequacy of the regression function can be tested. The experimental
variance is estimated by

_ o) . _ 1 o — \2 — 1,
SE = —aASg With sg = m713]. (M - m)“and m; = Ea} m; .
The sum of squares of residuals can be decomposed as follows
— — 2
= &[(m - M)+ (M- b-bf,(v)-bfW)] =ns + .
i
The contribution to variance caused by lack of fit and estimated by §° = S?/(n—3) is

compared with the experimental variance estimated by sé f

F =5/ 3 Fa(n—3,N=n),
where F, denotes the critical value for the significance level a, the adequacy of
regression must be rejected.
[ ]

After having obtained adequate regression polynomials in two series of tires, | and
[, their statistical identity can be tested within their common variance limits [54].
For k parameters b, ..., bk in regression function (7.2) and different numbers of tiresin
both series the following criterion isto be used

7 = N' +N - (||—b) (V|+V||)_l(b||—b)

2(S7+S) )
which belongsto the distribution F(k, N; + N, — 2K).
In the most frequent case, when the same test designisrun, i.e. Ny =N, =N =mn
and V, =V, =V, the quantity

Z = N-3 (b =b)" @V) (b —b) = N-3

S+S) S+S)
belongsto the distribution F(k, 2(N—K)). Thus, if Z 3 Fa(k, 2(N —k)), the identity of
rolling resistance polynomials in both series must be rejected at the significance level

a.

(b —b)"ATA (b”—b)—
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Choiceof f, f3

The functions f,, f3 in Equation (7.2) must be linearly independent. If afixed design of
rolling resistance tests is kept, one could use orthogonal polynomials, i.e. polynomials
orthogonal on afixed set of discrete values of velocity. Unfortunately, their adaptation
to individual plans would just complicate the problem without any contribution to its
causal or physical substance. So, in an easier way, simply two different powers of
vwill betaken: fy(v) =V, f3(V) =V°, wherer, sareintegers, 0<r <s.

A set of pairs{(r,s) : 0<r <s<10} was examined in 61 various series of radial
tires. Results are shown in Table 7.2.1. The right upper part (above diagonal) of the
Table contains total sums of squares of residuals, the left lower part shows the
transposed matrix whose entries are the corresponding numbers of non-adequacy cases.

sS®
1 2 3 4 5) 6 7 8 9
1 10.48 6.68 4.10 2.57 1.87 1.75 2.05 2.63 1
2 27 477 3.12 2.16 1.73 1.68 1.88 2.26 2
3 25 18 2.39 1.86 1.64 1.64 1.77 2.00 3
S 4 16 15 10 1.69 1.60 1.62 1.71 1.83 4 r
5 15 9 7 4 1.60 1.62 1.67 1.73 5 _
6 5 3 4 3 2 1.63 1.66 1.68 6
7 4 2 2 3 1 2 1.65 1.66 7
8 4 2 2 2 2 2 5 1.66 8
9 4 3 3 3 3 4 8 9
1 2 3 4 5) 6 7 8 9
r®

Table 7.2.1 — Sums of squares of residuals, S(r, s)x10™ (above diagonal) and numbers of non-adequacy
casesn(s, r) (below diagonal) in 61 series of radial tiresin dependence on power exponentsr, s.

Hence, with regard to minimum r and s the regression polynomial
P(V) = by + by V¥ + bav!
is quite acceptable (and recommendable) for the speed range from 50 to 170km/h.

In different tires and other speed ranges another regression polynomia may prove
most appropriate, of course. Figure 7.3 shows an example, where using a polynomial
of degree greater than 2 would be of no use.

Let us consider rolling resistance data of the 165/70R13 tire obtained in laboratory
on a2m-roadwheel (Table 7.2.2).

i 1 2 3 4 5
speed vi, knvh 50 ) 120 150 170
10°m, 12.29 13.09 13.95 16.14 18.01
10°m, 12.46 12.93 13.92 16.05 17.87

Table 7.2.2 - Values of rolling resistance coefficients m in 165/70 R 13 tire.
Initial inflation pressure p = 250 kPa, load Fg = 5100 N.
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Figure 7.4 shows the regression polynomials for severa r, s. Exponents (r, s) from the
matrix

L2 (L3 (L4 (15 1o

¢ 23 (24 (25 (26

g (34 35 (36
g (45 (46

give SSR shown in Figure 7.5. Minima SSR are near the diagonal. Larger r may fail
in extrapolations. Thus, it is difficult to give a general recommendation. E.g. one can
start withr =1 and try s= 2, 3, ... until adequacy isreached. Thenr =2,s=3, 4, ...
can betested etc. Finaly, the pair (r, s) minimizing r + s can be taken as the result.

24

(r,9)=(26)
(2.4)

22 165/70R13
(1, 3) 737
20

18

16

14

Rolling resistance coefficient

12

10

50 100 150 200
Speed, km/h

o

Figure 7.4 — Several regression polynomials for the data in Table 7.2.

Figure 7.5 — Sums of squares of residuals (SSR) for different (r, s).
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Influence of Some Construction Factors on Rolling Resistance
The linear regresson methods were used to evauate effects of wider rim and some
construction changes in tire belt. Dotted lines denote the corresponding 95-percent confidence

limits around regression polynomials.
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Figure 7.6 — Influence of the rimwidth on rolling resistance in 165/70 R 13 tires.

Both data seriesin Figure 7.6 are very close each other, so let us test the hypothesis
Ho: they are statistically indistinguishable. Let ber = 2, s= 4 and b4, b, be vectors of
regression coefficients belonging to the 414", 5%” rims

2 0.016395 2 0.0161156 2557107 %0
by = §- 0.003603>, b,=G- 0.0036587, b,—b;=¢- 5477 10°°-.
& 0.001768 & 0.001802; ¢ 3.35° 10-55
Further,
e 12 2238  56.391 ¢
ATA=62238 56391 156.92017,
§56.391 156.9201 455.2821;
N=12, S7=19134x107, S =2.2829x10”,
SO
N-3 T AT
Z= S+ (b —by))" ATA (b —by) /2 = 5.807113 > 3.1599076 = Fq 5(3, 18).
1

Thus, the hypothesis Hp must be rgected. In other words. the change of rolling
resistance due to one inch changein rim width is statistically significant.
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The next two examples show how the belt width and cord angle in steel belt plies influence

the ralling resistance. Results are presented without further comments in the following figures.
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Figure 7.7 — Influence of the belt width on rolling resistance in a 165/70R13 tire.
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Figure 7.8 — Impact of the belt angle on rolling resistance in a 165/70R13 tire.
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7.3 Dependence of mon Inflation Pressure and Load
Tirerolling resistance plays a very important role in highway traffic. Tiresin daily use
do not run aways in optimal conditions. Although their speed is bounded from above
by legal limits they may be overloaded e.g. by low inflation pressure or high load.
Then the question arises how the load and inflation pressure influence the rolling
resistance at a given speed.

As well known, rolling resistance depends substantially on two factors connected
with tread/belt block: radial deflection u and contact pressure py, i.€.

R(p, Fr) » ap + a1 U + az P

The following Figures 7.9, 7.10 show these quantities as functions of the inflation
pressure p and vertical load Fg in 295/80R22.5 tire on the road wheel with diameter 2m
computed by means of belt model.

The functions u(p, Fr), pmc(p, Fr) appear quite simple and smooth. The variables p,
Fr may be chosen independently in a convenient range. Then the coefficient of rolling
resistance may be approximately represented by the following function

1000 m(p, Fr) » bg + by Fr+ by 1 :
p
In order to find the estimates by, b1, b, of coefficients by, b1, b, in 295/80R22.5 tires

astatistically designed experiment was carried out [51,55].

70

60
Rad. deflection

U, mm >0
40
30
m 60-70 20
@ 50-60 10
e
[0 20-30 500 600 20 25\/ert. load F 5, kN
m 10-20 700 0o 15
@o0-10 Infl. pressure p, kPa 900

Figure 7.9 — Radial deflection u of the 295/80R22.5 tire on 2m-drum computed by belt model.

An acceptable and sufficiently large area for load Fr and inflation pressure p at
constant speed 70km/h was determined by the belt model so that tire destruction during
testing was avoided. The radia deflection was limited by 50mm and the maximum
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contact pressure by 1.2MPa. Experimental points were designed in the corresponding
area as shown in Figure 7.11. Two tires were tested independently at randomly chosen
points of design.

Contact 1400
pressure

800

m 1200-1400
@ 1000-1200
| 800-1000
O 600-800

0O 400-600

m 200-400

@ 0-200

35

20 Vert.load F g, kN

700

Inflation pressure P, kPa &0

15

900

Figure 7.10 — Contact pressure py. of the 295/80R22.5 tire on 2m-drum computed by belt model.

The regression coefficients were

g 6.344+0.883p
b = ¢- 0.030+0.020°,
& 0.494+0.429

the residua variance estimate srzaS = $/(n-3) = 0.03345 and the estimate of

experimental variance was sgx = 0.01757. Because

82

F = =% =1.90349 < 3.37375 = F5(6, 9),
SeX

the function (Frisgivenin kN, pin kPa)

m(p, Fr) = (6.344 — 0.030 Fr + 0.494 1 )x 10°
p

represents adequately the rolling resistance coefficient of the 295/80R22.5 tire on the
2m roadwheel at velocity 70km/h for the inflation pressure from 550 to 850kPa and
vertical load from 15 to 35kN. Figure 7.12 shows the resulting response surface.

Similar results with the same type of regression function were obtained also in car
tires 155R13 in the experimental range [150kPa, 250kPa] x[ 3kN, 5kN] [56]:

m(p, Fr) = (9.160 — 0.443 Fr + 1.492 1 )x 10°
p
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Figure 7.11 — Design of experiment to determine the function m{p, Fg) in 295/80R22.5 tire.
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Figure 7.12 — The regression approximation of the surface n(p, Fg) in the 295/80R22.5 tire.

Remark. In a bounded region of conditions the rolling resistance coefficient can be
approximated by the product 1000 n{v, p, Fr) = (bo + b1V +b,v°)(bs + bsFr + bs/p).

P
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8 TIREUNIFORMITY

Tire uniformity is a necessary condition for comfort ride at high velocities. Tire cannot
be perfectly uniform due to its heterogeneous structure, tread pattern and ways of tire
production. Nevertheless, uniformity disturbances are always a nuisance worsening the
comfort, so there is a permanent pressure on tire manufacturers to reduce them.

Vehicle is considered as a dynamical system composed of relatively stiff parts
joined together with deformable parts like springs and shock absorbers. The behavior
of such a complex mechanical system leads to systems of many differential equations
with nonlinearities. As a rule the dynamical system of vehicle is substantialy
simplified to reach its principal transparency and enable its mathematical solvability.

Today such dynamical systems can be modeled as multibody systems by means of
various software packages like MSC/ADAMS, MSC/AUTOSIM etc.

8.1 Two-Mass Moded of Vehicle

Figure 8.1 — Reduction a car to a two-mass system to describe its vertical oscillations.
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The big parallelepiped in Figure 8.1 represents the car body, the four smaller bodies
with springs and shock absorbers the suspension (chassis). Radial deflections of tires
are small related to wheel distances. Thus, the first approximation of vertical vibrations
may be obtained by a quarter of the original model, the two-mass system (Figure 8.2).

u, |

Figure 8.2 — Dynamical two-mass system, vertical coordinates and their changes in displacement on a
bumped surface of the road.

The mass of the wheel, hub, axle shaft etc. is m; (unsprung mass), that of a quarter
of the car body m, (sprung mass). Tire stiffness ¢; in usual condition is much higher
than the stiffness ¢, of body spring. Damping k; of radial oscillations in tires (Figure
6.1) is substantially smaller than that of body shock absorbers k,. Real springs are
nonlinear (Figures 5.4, 5.13-5.15, 6.8) but in small oscillations they may be linearized.

In the first spring (tire) the change of its length is equal to the displacement of the
mass my (concentrated in the wheel center) in relation to the road surface h = h(x, t),

Di=u;— h.
The change of length of the second spring is
D, = u, —Uu.

Total potential energy is the sum of potential energies of both springs,
U=Us+Uz=—3[c (u=h)*+c; (L —u)?] -
Similarly, the kinetic energy is the sum of kinetic energies of both masses
T=(T1+T)= %(ml'ﬂlz"‘mz'&zz) ,
where the dot denotes the derivative with respect to time, @, = ddlf[l etc.
The dissipated energy F istaken in asimplified manner as the loss due the viscosity in
both damping members
F=Fi+F2= —[k(l—h)+ k(8—)7]-

The motion of the system from Figure 8.2 is described by two Langrange's equations
of the second kind [44]
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deef o 1 ﬂ
—C—(T-U)z—-——(T-U)=—F +F, k=12,

dt gﬂ'&k T )b flu, e, ‘

where F, are external forces. Substituting T, U, F by corresponding expressions yields

my Bl +ci(ui—h) —Co (U —) = —ky(W 1 — |&)+k2(|&2—|&1) +Fy,

Myl + (U —u) = —k(W2— W) +F;.
When initial conditions are given this system of equations can be solved eg.
numerically [10]. But concrete solutions in time do not supply general view on the
system behavior. Transfer functions or, more precisely, frequency characteristics are
much more elogquent. The Laplace transform [9] givesfor F1=F,=0 [51,57]

(myp? +k,p+c,)(c, + Kk p)
[myp? +(ky +K;) p+(C; +C,)][Myp? + K, p+C,] - [Kop+c,]°
(¢, +kp)(kp+Cy)
[myp? + (K, +Ky) p+ (¢ +6,)I[m, p? + Ky p+¢,] - [Kyp+€,]°
where H (p), U 1(p), U 2(p) are Laplace' simages of h(t), uy(t), ux(t).

U(p) =

H (p),

U(p) =

H(p),

Putting p = iw gives formally Fourier’ simages (i = ﬂ).
L et the denominator be written as the sum of real and imaginary parts,
D(iw) = R(w) +i I(w),
where
R(W) = Re D(iw) = mympw* — [myCot(Cr+Co)mutkeks] WP + ¢iC5
(W) =1m D(iw) = (KiCr+C1ko) W — [mpky+(my+mp)ky] WP .
Then the amplitude-frequency characteristics of the car body is

_ (e +iwkg)(ep +iwko)| _ /(eic, - kakaW?)? + WP (i, +C5ky)?

D(iw) R (W) +12(w)

The discomfort of the ride on the road surface is physiologically perceived through

d®uy (t)
dt?

A(w)

the body acceleration. Integral transforms of car body acceleration are simply

p2U 2(p), \/\/2A(W), respectively.

Example. Let us consider the following parameters:

c1 =250 000 N/m (radial stiffness of tire),

C, = 30 000 N/m (stiffness of body springs),

ki = 3 kg/s (damping coefficient of tire),

ko = 2 000 kg/s (damping coefficient of body shock absorber),

my = 50 kg (wheel + hub + axle),

m, = 400 kg (a quarter of sprung mass, i.e. body + passengers + load) .
Figure 8.3 shows the amplitude-frequency characteristics of the sprung mass for
different radial stiffness of tire as practically proportional to the inflation pressure.
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Figure 8.3 — Amplitude-frequency characteristics of sprung mass acceleration for variable radial
stiffness of tire.

Because real dynamic systems of automobiles are nonlinear in the first place and
incomparably complex in comparison to the two-mass model more redlistic estimates
of transfer functions are obtained by means of spectral densities S(w) of accelerations
measured in convenient places of the automobiles and the spectral density Sy(w) of

road displacements,
Aw) = |2
So (W)

But the corresponding measurements are complicated, very particular and expensive.
On the other hand, the computer modeling offers much cheaper possibilities. Their
results, however, must be verified by measurements at several pilot points at least.

8.2 Disturbances of Radial Uniformity
Generdly, tires transmit spatial forces and are required to have sufficient adhesion to
the support in all weather conditions. Tread pattern enhances the adhesion but at the
same time it is a source of uniformity disturbances and noise emissions of the tire.
Slices of tread, sidewalls, carcass and belt plies in building process are another source
of such disturbances [52]. Variability of stedl cord circumferential density in radial
carcass of truck tire and other irregularities were discussed in [58,59].

The mentioned irregularities cause variability of force on rolling tire which can be
tracked in a relatively easy way on specia testers of uniformity. The principle of
measuring the radial forceis shown in Figure 8.4.
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Fixed distance

Radial deflection

Tester drum

Figure 8.4 — Sketch of tire uniformity measurement.

The tire is placed between two massive disks whose distance is set up to the width
of the simulated rim in the next step. The tire is inflated to the nominal air pressure.
The drum is pressed against the tire until the radial force attains the required value.
From that moment the distance between the parallel axes of the drum and the tire
(disks) is kept fixed. Then the tire rolls several times in one direction (e.g. counter-
clockwise one) and then in the opposite direction. During this process irregularities in
forces and geometry are measured, recorded and eval uated.

The arrangement of uniformity testing (Figure 8.4) suggests the idea of dominant
role of the tread outer surface and a smoothing effect of the contact area in the way of
moving averages of the order corresponding to the contact length [51,60].

Effects of long-wave geometric disturbances on radial force variations can be
estimated relatively well by the belt model. Let the 295/80R22.5 tire be considered as
an example. Its carcass geometry is given by the following 5-tuple (Chapter 4)

(Ra, W, Ry, I's, Zg) = (492, 139, 400, 318.9, 93.8).
Solution of the corresponding problem (A) yields the parameters L = 0.1580705,
J =1.3854194 and meridian length Lag = 287.17mm.

The belt tension T is considered constant due to genera tendency of belt to occupy
the circular shape [52]. Thus, a change of one parameter may induce changes in other
ones making the total effect milder. The total thickness of tread and belt block (i.e. the
difference of the outer tire radius and the carcass equator radius) is hyg = 16+13 =
29mm, the belt tension at the inflation pressure 850kPa and velocity 10km/h is T =
49 015.87N.

Example. If the tire is assumed to be vulcanized in a perfectly axisymmetric mold
a long-wave disturbance of +lmm of tread thickness produces decreasing and
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increasing the carcass equator radius of 491 and 493mm, while the tire width as well as
the beads remain unchanged. The changes of meridian length can be estimated in a
simplified way by solving the following two problems (A)

(R, W, Ry, 15, 2) ® (L, J),
where Ry = 491 and 493mm. One obtains

Ra, mm L J, rad. Lag, MM T,N
491 0.1573085 1.3839069 286.42 49 391.56
493 0.1588227 1.3869022 287.94 48 653.44

The constant belt tension may be supposed to be the origina value T = 49 015.87N.
Changes of T at different meridional lengths are eliminated by changing the carcass
equator radius (found by interpolation):

hrs Ra, mm
17+ 13 491.391
15+13 492.625

Hence, the carcass run-out caused by the 2mm-differencein tread thickness is
DR = 1.234mm.
The belt model gives also radial load-deflection curves corresponding to different
tread thicknesses:

hrs Ra(hrs), mm F(u), N

30 491.391 —0.00940 u° + 5.26867 u” + 669.803 u
29 492.000 —0.00933 u® + 5.25550 u” + 670.142 u
28 492.625 —0.00925 u° + 5.24225 u* + 670.478 u

The perfect tire with the outer radius 492 + 29 = 521mm at 850kPa and radial
deflection 37mm corresponding to radial load 31.5kN on uniformity tester drum with
radius 800mm determines the distance between the axes of revolution of both tire and
drum
d =800+ 492 + 29 — 37 = 1284mm .

Let this distance be fixed, d = 800 + R(hrg)a + hyg — u = 1284mm. Then the radid
deflection of thetire in aplace with another tread thickness hrg is

U(hTB) =—d +800+ RA(hTB) +hpg = RA(hTB) + hg —484.
Now the corresponding radial loads, F(u(hg)), can be computed from the formulas
written above:

hrg, MM u(hrg), mm F(u), N
30 37.391 31919.27
29 37.000 31519.38
28 36.625 31137.07

Thus, the rate caused by along wave variability of the tread-belt thickness is
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dF(hTB) 31 919.27 - 31137.07
dhrg 2
the rate of tread radial run-out
dR(hrg) _ d(Ra(hrg) +hrg) , , 491.391-492.625
dhrg dhrg 2
and the rate of carcassradia run-out
dR, (hrg) N 491391 - 492625
dhrg 2
Theided rel ationship between radial force variation and tread or carcass run-out is

» 391IN/mm

» 0.383

»—-0.617.

dF (hvg) | » 1020 9N/mm  or | OF(re) | » 633.7N/mm.
dR(hrg)| dR,(Pre)|

In a series of 4273 of the 285/80R22.5 tires the average ratio Qg of radia force
variation and radia run-out was 605.2N/mm with the sample standard deviation
131.2N/mm, in another series of 4021 of those tires the average ratio of radial force
variation and radia run-out was 628.5N/mm with the sample standard deviation

234.2N/mm. Hence, |dF(hg)/dRa(hg)l appears to be a quite acceptable

approximation of Qg.

Impact of the sidewall or bead apex thickness variability, bead bundle eccentricity

etc. on radia uniformity can be estimated in asimilar way.
[ ]

Any serious measurement must be repeatable. Repeatability was verified by detailed
measurements along the circumference of the 295/80R22.5 tire carried out one after
another four times [51,60].

In regular regime of measurement the following seven quantities are recorded in
128 equidistant positions{fy = 2pk/128: k=0, 1, ..., 127} of the circumferentia angle.

1. radial force deviation in the clockwise direction,

2. lateral force deviation in the clockwise direction,

3. radia force deviation in the counterclockwise direction,

4. lateral force deviation in the counterclockwise direction,

5. radia run out on the tire equator,

6. axia run out on the sidewall from the bottom part of the vul canization mold,
7. axia run out on the sidewall from the upper part of the vulcanization mold.

Evident periodicity of forces and run outs leads to their decomposition in harmonic
components. E.g. the radia force can be written as the following trigonometric
polynomial in the phasor form [10]

S(f)=ro+ & resin(kf +fy),
k=1

where ry= W Is the amplitude and f  the phase of the kth harmonic,
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}- arctan(b, /&) a >0
fr=1- sgn(b,)+arctan(b, /a,) for a, <0 ,
1- sign(by,) p/2 a =0
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Figure 8.5 — Average of 4 measurements of radial force variation and radial run out in a new rejected
295/80R22.5 truck tire for tuned phases.
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Figure 8.6 — Radial force deviation and run out in the 295/80R22.5 tire from Fig. 8.5 after grinding.
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Figure 8.7 — Approximation of the average radial force from Figure 8.5 by several trigonometric
polynomials S..

The fitness of trigonometric polynomia may be evaluated by the standard deviation
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Figure 8.8 — Approximation quality of trigonometric polynomials.
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The variable radial force can be viewed as a random process [11] that can be
decomposed into infinite harmonic components. Fisher’stest [11] reveals, which of the
components in the corresponding finite amplitude specter {r«. k =0, 1, ..., n} are
statistically significant, i.e. stand out from the random noise.
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37.330664
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Harmonic index k

.592336
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0.233046
0.059648
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Figure 8.9 — Amplitude specter of the average radial force displacement from Figure 8.5

Amplitudes are ordered in the decreasing series, r; > ry > ..

., and its squares are

16
summed up, e9. § = érjz .Then $ =5 — rlz, S=S9- r22, ... The Fisher’'stest in

J_

specter of Figure 8.9 is summarized in the following Table (W s are critical values) [11].

i K r r S r?S Wo.os (17)
1 (2) 39.67292 1573941 4274566 0.368211 0.337691
2 (1) 37.33066 1393578 2700.626 0.516021 0.355160
3 (3) 2954679 873.013 1307.047 0.667927 0.374726
4 (4 18.08323 327.003 434.035 0.753404 0.396806
5 (5 6.89457 47535 107.031 0.444123 0.421932
6 (7) 4.17088 17.396 50.496 0.292393 0.450800
7 (6) 3.94628 15.573 42.100 0.369908 0.484331
8 (8) 3.31285 10.975 26.527 0.413731 0.523768

Thus, only the first five harmonics are statistically significant in this case.
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8.3 Distribution of L ow-Speed Unifor mity Disturbances

Standard tire uniformity measurements are carried out at very low speeds of
1 revolution/s, i.e. less than 10km/h in car tires. The measurement result is a vector
a8, 0
X = g M :
8Xm 6
whose components are:
x; = RFV (Radia Force Variation peak to peak),
X2 =r; = H1 (Amplitude of the first harmonic in radial force),
X3 = LFV (Lateral Force Variation peak to peak),
X4 = CON (Conicity),
x5 = TRO (Top Run Out of the upper sidewall (in mold)),
Xs = BRO (Bottom Run Out of the lower sidewall (in mold)),
x7 = RRO (Radia Run Out on equator).

This list may be extended by further items, e.q. ply steer PS further harmonics in
radial (H2, ...) and lateral (LH1, LHZ2, ...) forces, run out in different positions on tread
or sidewall etc. Therolling direction may be respected as well.

Components Xy, ..., Xm are random variables bounded from above and from below,
smilarly like strength of materials [39]. For example, radia or latera force
disturbances cannot be negative and cannot be greater than e.g. nominal load of tire.
Thisisvalid also for conicity although it may be of both signs, positive or negative.

Thus, a component of uniformity disturbance is a random variable from some fina
interval | = [by, by]. As arule, its relative frequency (probability density) f increases
from f(b;) = 0 to a maximum f(Xmax) > 0 (modus), b; < Xmax < b2, and then decreases to
f(b,) = 0. The following product is one of such simple and smooth functions

A(X_ bl)b& (bz - X)b4 , A 'bs, by>0.
This function defines a probability density only if it is normed, i.e.

by

by
N by
A Q (x-b)” (b - x) o= 1,
by
The function
x-b
b,- b
IS one-to-one mapping [by, by] ® [0, 1] . Hence
b, 1
O (x-0)* (b~ x)"dx = (5,- B)*™" ) Q- O ot = (5, - B)*""B(bs+L, bitD)
bl 0
where B is the well known Euler's Beta function [39]. Between this and more
frequently used Gamma function [9, 39] is the following connection

1) =
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B(b3+1, b4+1) — qb:'! +1) G(b4 +1) )
G(bs +by +2)
The corresponding (cumulative) distribution function is then
X-by

b, - by
— CXb?)-'-b4+2) N ib 1 4\
F(x, b) Sby 11 G, +1) (()) £ (L- )™ dt,

where b = (b, ..., bs)" is the unknown vector of parameters. It may be defined by
minimization of the function

X3(b) = (n np|)
_1 np;
Here n is the total number of elements in the considered series of tires. The interval of
measurement | = [by, by] is decomposed into K subintervals |; (classes), nj are
frequencies (numbers of elementsin I;) and np; are "theoretical” frequencies,
=0 dF(x, b).

I
Parameters by, ..., by are found by direct minimization of X*(b) based on genetic
algorithm [10,39].
For great n the quantity X?(b) belongs to c?(K—1) distribution. This enables testing
the goodness of fit [11,54] by comparing X*(b) to the critical value c%(K—1—4). In
other words, the fraction X?(b)/ ¢2.(K—1—4) must be < 1.

Example. A series of the 385/55R22.5 tires of range n = 786 was decomposed into
K = 16 classes with respect to lateral force variation (LFV). The search for minimum of
X?(b) gave the following results (D. denotes confidence limit for probability level a
under the assumption of normality of by, Da = Us_a2 S/-/f , Where Uy, isthe quantile
of N(O, 1), sisstandard deviation and r = 5 is number of calculation repetitions)

Run 1 Run 2 Run 3 Run4 Runb5 Doos

b, 1494  2.016 1.822 1771 1358 0.061
b, 35435 32580 34996  35.672 35.664 1.502
bs 5533 4581 4.999 5121 5.759 0.187
b, 19.180 15358 17967 18.748 19.718 2.564
X 2086  2.499 2.125 2046 2164

X%c?0 05 0.106  0.127 0.108 0104 0.110

The minimum X?(b) was obtained in the 4™ run (shadowed column) and is taken as the
parameter vector estimate b. Thus,
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@ 1771+0.0615
b™" = %p + Dygs = ¢ 35672+1502.
¢ 5121+0181+
€ 18.748+ 2,564,
Figure 8.10 shows the comparison of real frequencies n; with those predicted by Beta
distribution, np;.
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Figure 8.10 — Empirical and theoretical frequenciesin a series of 786 tires 385/55R22.5.
°

Similar results were obtained also in other components of uniformity disturbances.
E.g. Figure 8.11 presents the conicity.
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Figure 8.11 — Empirical n; and theoretical np; frequencies of conicity in a series of
786 tires 385/55R22.5.
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The choice of probability distribution is free. Other distributions are suggested in
[39], e.g. the double—branch normal distribution DN(bl, by, bs). Its density,

X>by

! b, 6°Y

::: bz + b3 §b2 3 xE
fon(X; b1, b, bs) = I ?a for )

: m g u

%

P

el & A2

b, +by "€ §b3ﬁ5 Y

e u

is positive in the whole real axis R™. This, of course, contradicts the requirement of

boundedness of measured quantities. The same fault appears in correspondingly
generalized Weibull distribution that could be considered for some positive quantities.

The following Table presents ratios X*(b)/ c%(K—-1—p) for different probability

distributions (p = 2 in normal distribution, p = 3 in D-normal distribution and p = 4 in beta
distribution) and speaks in favor of beta distribution.

Tire size n X Normal d. | D-normal d. | Beta distr.
385/55 R 22.5 786 RFV 1.020 0.202 0.204
H1 0.924 0.379 0.378
LFV 1.552 0.140 0.104
CON 0.539 0.128 0.193
PS 0.410 0.529 0.354
TRO 0.940 0.143 0.103
BRO 2.335 0.058 0.183
RRO 0.781 0.068 0.065
385/65 R 22.5 1842 RFV 3.880 0.821 0.721
H1 2.568 0.400 0.397
LFV 3.011 0.532 0.373
315/80 R 22.5 4517 RFV 3.753 0.860 0.438
H1 6.630 0.486 0.247
LFV 6.500 0.545 0.472
295/80 R 22.5 4273 RFV 5.541 0.560 0.703
H1 7.078 0.580 0.815
LFV 10.907 0.931 0.738
CON 7.218 0.975 0.449
TRO 8.048 0.864 0.541
BRO 4.302 0.754 0.281
RRO 7.605 0.846 0.695
295/80 R 22.5 4022 RFV 2.383 0.238 0.252
H1 2.825 0.985 0.718
LFV 8924 0.513 0.732
RRO 6.384 0.515 0.770
275/70 R 22.5 1178 RFV 2.091 0.328 0.284
H1 2.275 0.921 0.370
LFV 3.023 0.229 0.211
CON 0.326 0.509 0.578
TRO 2.137 0.251 0.348
BRO 3.501 0.351 0.524
RRO 2.200 0.261 0.338
T ———S—§—§—§$—§—§—@$@—§—§$—S—mS———a—S“S“—“n“¢
Sum of testing ratios 121.611 15.902 13.579
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8.4 Correlation among Uniformity Components

Individual quantities registered in tire uniformity testing may appear independent or

joined mutualy. The correlation coefficient shows a quantitative evaluation of the

dependence degree between two simple quantities. In vector quantities it is substituted

by correlation matrix whose entries are the customary correlation coefficients[11].
Results of uniformity testing in a series of tires can be written as an nxm matrix,

where n isthe number of tiresin the series and mis the number of measured quantities,

x Xll X12 leg
Xo1 X o Xomu
X:g ) s = (X, ey Xim) -
¢Xn-11 Xn-1,2 - Xnoim+
8 X1 Xn2 o Xamg
Columns xi, ..., Xm represent the measured quantities. The sample correlation

coefficient of vectors x;, Xk is the number

LICTRENCIRE

Mk = )
I 72 |8 72
\/_a (%5 - ;)7 [ a X - %)
i=1 i=1
_ 1n — 1n .
where X; = =& X; , X = — & X arethe column averages. The numbers ;. are entries
ni=1 Ni=

of the mxm symmetric matrix R. Obviously, r; =1, ] =1, ..., m. Critical value of the
correlation coefficient for the n-dimensional vectors (n>2) and the significance level a
is[11,54]

N~

ra()= &4 N2 2
§ tZn-25
where t;(n—2) isthe corresponding critical value of t-distribution.

Here is an example of the correlation matrix in a series of tires 385/55R22.5 in
which eight components of uniformity were registered (n = 786, ro0s(784) = 0.06994).
Entries above the diagonal need to be written only, due to symmetry.

H1 LFV  CON PS TRO BRO  RRO
RFV 00220 00577 -0.0108 -0.0183 0.0301 PORELL
H1 00048 0.0866 00002 -0.0015 0.0166
LFV 0.0136 00556 -0.0201 -0.0506 0.0528
CON 01316 00196 0.0722  0.0699
PS 00639 -0.0238 -0.0020
TRO 0.1926 -0.0309
BRO 0.0048
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Figure 8.12 — Visualization of the above correlation matrix obtained in 786 tires 385/55R22.5.

The relationship between two components X;, X of uniformity may aso be shown
by graphical presentation of pairs (x;, i) likein Figures 8.13, 8.14.
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Figure 8.13 — Pairs of radial force variation and radial run out in 786 tires 385/55R22.5.
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Figure 8.14 — Pairs of radial force variation and lateral force variationin 786 tires 385/55R22.5.

The correlation matrix shows that the significantly correlated components are joined
to disturbances of radial uniformity, i.e. radia force variation, first harmonic, radial run
out. In other uniformity characteristics the correlation is substantially weaker, even
statistically non significant asarule.

Similar results were obtained in many other truck and car tire series of different
sizes[51,59,61].

8.5 High Speed Uniformity

In car tires higher speeds and smaller rolling radii must be taken into account. Very
low aspect ratio and high centrifugal acceleration increase the total belt tension and the
tire behavior might be expected a bit closer to that of stiff eccentric model [52].

In the mentioned work [52] general tending to circular (cylindrical) belt was
experimentally shown on a radia tire whose belt consisted of two circumferential
sections of very different stiffness. There are two consequences of it:

the model of eccentric represents the first harmonic in radia uniformity
disturbance and may be the first approximation in analysis of uniformity,
higher harmonics can be assigned to imperfectly prepared parts, slicing, bead
bundle placing in tire building and the following production steps.

Revolving the wheel round an eccentric axis is shown in Figure 8.15. There is a
visible difference in the lengths of the upper and lower parts of the wave path of the
axis of revolution. It necessarily produces acceleration and deceleration in the
horizontal direction, thus, a periodic circumferentia force.
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Figure 8.15 — Siiff cylindrical eccentric as the simplest model for radial uniformity disturbances.

Deformability and elasticity are inherent properties of tire reducing significantly
negative consequences of radial uniformity disturbances. Their effect could be
represented by diminishing the eccentricity, i.e. the distance between the geometric
center S and the axis of revolution O in Figure 8.15.

Radial run out changes the rolling radius of the tire. Consequently, angular
acceleration dw/dt is arisen, the same in the entire wheel. The mass m of the wheel

produces the torque
. _ Qv . _radw daw ., dw
M=g@Qr—dm= —— dm=— @ rdm=J —,
0 a0 a O dt

where J is the moment of inertia. The torque can be assigned to a circumferential force
Fc (also called tangentia force) acting on the arm equal to the whedl radius R, i.e.

M =RFc.
The mass of the wheel is small in comparison to the total mass of vehicle. If no dipis
supposed then the trandational velocity of automobileis constant. Thisimplies
dv _ dWwR) _ R dw W dR

da dt  dt dt
and
dw __w R
dt R dt

Therolling radius may be substituted by the initial part of its Fourier expansion [10]
N
Rf)=A(ro+ & resin(kf +1y)),
k=1

where A » 1, rq is the average rolling radius of tire, r, and f are amplitudes and phases of
radial run out harmonics. Then

dR(f) = dR(f)w:AW gj kri cos (kf +f,).

dt df k=1
The circumferential force
2 N
Fc = M —(— W @)——A—WZ a kri cos (kf +f,) » N & krecos (kf +f)).
R R dt R? R* k=1

Thus, Fc isincreasing with the square of vel ocity.
[ ]
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To illustrate the high speed uniformity two series of tires were chosen:
235/40R18 tires, n=518 and
235/60R18 tires, n=1 216.

Main parameters of those tires are as follows:

Tire 235/40R18 235/60R18
Overall diameter, mm 645 739
Overall width, mm 241 240
Rim 8.5x18 7.5x18

Belt model parameters:

Carcass equator radius Ry, mm 309.5 356.5
A half of carcass “width” W, mm 1155 115.0
Carcass curvature radius in belt area Ry, mm 3000.0 1000.0
Bead point radial coordinate rg, mm 249.8 250.3
Bead point axial coordinate zg, mm 104.4 92.3

(s, Z)

D18" (R228.5mm)

Figure 8.16 — Sketches of belt models for the 235/40R18 and 235/60R18 tires.

Distribution of low speed radial force variation is presented in Figure 8.17. Squares
represent real frequencies n; in total n tires, while continuous lines and small circles
belong to Beta distribution and theoretical frequencies np;.
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0.35
235/40R18

0.3

0.25

0.2
0.15

v
0.05 ﬁ

0 2 4 6 8 10 12 14
Radial force variation, 10N

Eﬁ 235/60R18

(Rel. freq.)/(Class width)

Figure 8.17 — Distribution of radial force variation in two series of car tires at low speed (v = 8kmvh).

The distribution of uniformity disturbances is changed dramatically at high speeds.
Thisisillustrated in the following two figures.

%ﬁ% v=8km/h 235/60R18

0.25

=
[\

0.15 -

v = 120km/h

S
[N
!

(Rel. freq.)/(Class width)

0.05

O T T T T

0 5 10 15 20 25 30
Radial force variation, 10N

Figure 8.18 — Distribution of radial force variationin 235/60R18 tires at speeds 8km/h and 120knvh.
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0.18

0.16 1 235/40R18
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0.14 -

0121 y=8km/h
0.1 1
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0.08

0.06 -

Relative frequency

0.04 -
0.02

.
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0 5 10 15 20 25 30
Radial force variation, 10N

Figure 8.19 — Distribution of radial force variation in 235/40R18 tires at speeds 8knm/h and 120knvh.

The influence of the changes of velocity on lateral force variability is shown in
Figure 8.20.

0.16 |1235/40R18

0.14 4
>
20.12 A
S v = 8km/h v = 120km/h
o 0.1
©
0 0.08
>
&
— 0.06
@ d

0.04 - =

0.02 —

o T T T T T

0 2 4 6 8 10 12
Lateral force variation, 10N

Figure 8.20 — Distribution of lateral force variation in 235/40R18 tires at speeds 8knmvh and 120kmvh.

It can be said generally that the correlations among different uniformity parameters
(components) illustrated in Section 8.3 on several samples of truck tires preserve its
validity also in car tires.

But high speeds give rise to the question concerning the relation between low speed
parameters and high speed parameters. If the real tires behaved like a stiff eccentric
there would be a very strong correlation between uniformity parameters at velocities
v = 8km/h and v = 120km/h. The following figure shows, however, that the connection
between radial force variations at low and high speeds can be unexpectedly weak.
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235/40R18

R? =0.2265 °

variation, 10N
N
o

High-speed rad. force

0 T T T T
0 5 10 15 20 25
Slow-speed radial force variation, 10N

Figure 8.21 — Weak relationship between radial force variations at speeds of 8 and 120knvh.

This fact does not sound very encouragingly because tires perform regularly at high
speeds while standard uniformity tests are performed at very low speeds. This way the
value of standard low speed uniformity tests is reduced. It should also be taken into
account that the shorter contact length on drum significantly diminishes the smoothing
effect of contact area making the force uniformity tests more severe [51,60].

The model of stiff eccentric predicts a strong coupling of circumferential forces
with radial run out at high speeds but thisis not aways truein real tires (Figure 8.22).

50
L4
45 | | 235/40R18,
v = 120kmh o,
40 - ° .
R? =0.0045
35 . 0. °
L 4
°
4

Circumf. force variation, 10N

0 5 10 15 20 25 30 35 40
Radial force variation, 10N

Figure 8.22 — Weak correlation between radial and circumferential force variations at 120knvh.

F. KOUTNY: GEOMETRY AND MECHANICSOF PNEUMATIC TIRES



121

8 TIRE UNIFORMITY

8.6 — Concluding remarks

Tire testing could be viewed as a comprehensive autonomous science that uses special
tools of mechanics and thermodynamics, electronics, informatics, statistics. The
inherent variability of amost al parameters and characteristics of tire contribute
significantly to the complexity of mathematica modeling of tire behavior. The
following Figures 8.23 and 8.24 show examples of radial force and run out variance in
anew tire and the same tire after its rolling on the roadwheel for several hours.

40

Tire 295/80R22.5 (1)

30 Run

20

10 +

Y)
ALY u, ¥
A, e By A
Yy T R TR
' A
L 2 LA S, A""fi"
I D W VMR
Uras o
oU

Circumf. angle, °

Radial force variation, 10 N

—— Clockwise
—o— Counterclockwise

—a— Clockwise H

—a— Counterclockwise

Figure 8.23 — Change of radial force variation due to several hours of rolling the loaded tire on the
roadwhesl.

0.5

Tire 295/80R22.5 (1 Run New
@ &
0.3

o a

o1 B
0.0 ﬁ
)0 %&% {1!&) 2 60

(o —m

0190

-0.2
03 Circumf. angle, °

o4 Iy

-0.5

Radial run out, mm

Figure 8.24 — Change of radial run out due to several hours of rolling the loaded tire on the roadwheel.
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Similar variability can be found in high-speed uniformity. With another series of the
235/40R18 tires a high degree of correlation was obtained (Figure 8.25).

60 ‘

2
235/40R18 R®=0.713
v =120km/h °

40

20

Circumf. force variation,
10N

0 10 20 30 40 50 60
Radial force variation, 10N

Figure 8.25 — Correlation between radial and circumferential force variations at 120knvh in another
series of the 235/40R18 tires.

Thus, results and conclusions obtained by processing measured data samples are
always obtained only within some statistical confidence.

Generdly, the tire uniformity, especially the high speed uniformity, still remains an
open and challenging theme.
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9 SUPPLEMENTARY THEMES

9.1 Hydroplaning

Hydroplaning is slipping the tire on the layer of water at high speeds similar to ice
skating or skiing. In slips on the ice or snow athin layer of water arises due to contact
pressure and friction and the skate, ski, etc. moves amost without any resistance on
that lubricating layer. A similar behavior can occur in tire on flooded road in torrential
rain.

The older literature says that critical speed, i.e. the speed at which the friction on
the tirefroad interface drops practically to zero, is proportional to the square root of the
average contact pressure. This, however, is atoo general conclusion.

Recently many attempts were made to model the hydroplaning directly as a
problem of hydrodynamics using modern numerical methods of flow mechanics.
Several decades ago H. Bathelt published a simple model based on sinking a plate into
water layer [62].

We popularized and simplified his approach in the simplest case of the rectangular
plate sinking in the ideal incompressible fluid [63].

[ ]

The descent of arectangular plate is sketched in Figure 9.1. The potentia energy of
compressed liquid equals the work of the external vertical load F when the plate sinks
from the height hp = h(0) to h(t), i.e.

W(t) = F(ho — h(t)) .

z

trajectory
of particle

y

]
h(1)
1

Figure 9.1 — Descent of a rectangular plate in water layer.
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The kinetic energy of incompressible liquid (r = const) in the volume V between
theplate R=[-a, a]X[ b, b] andtheground (Figure9.1) isthe sum

t
=11 9 Vav+ g O Vvnds
V(t) 0 V()
( ho ab t  h(t)
= [ 0(00 Vdxdy)dz+ (O @4 Vv.nds) d2)di]
2° 5 ab 0 0 L
where v denotes the instant velocity of liquid particle, n isthe unit normal vector of the
surface TV and v.n is scalar product. Let the flow in the volume V be potential and the
instant velocity of liquid particles be assumed independent of the vertical coordinate z
Then the components of velocity can be supposed to be
WX, ¥, 2, 1) = (1) X,
WX ¥, 2, t) = f(t) y.
where the time functions f,, f, are arbitrary, thus, they can be chosen so that
f(0) =£(0) =0,

f(t) + fy(t) = — 1 dn@®) .
h(t) dt
Then
ab ab 2ab
00 Vdxdy = ¢ (X +2y) dy) dx = =~ (& f+b°f?),
-a-b -a-b 3
a b
O Vv.nds = (£SO +12y) fybdx+ ¢ (KX +12y) frady
L 0 0
ab 2 2 3112 352 212
:E(fx fya® + 3f,°b" + 3f’a” + fx f,"b")
and
2abr !
== [h) (&®f+b°RA) + ¢ h(f2fya®+ 31" + 313+, f,%0%) dt ] .
0
The law of conservation of energy yields T(t) = W(t), i.e. d'(l'j'ft) = dV(\j/t(t) . After
substitution of the corresponding expressions one obtains
2abr rdh(t) , o.2, 22 2, df, () o dfy(D)
— | —=(af +b°fy) + 2h(t) (a°f + b fy,———
30It(x y) ()(xCI ydt)
+h(t) (62, a2 + 31,02 + 3782 + £, £209) | =—F I
dt
o I 1 dh(t) : : F
Division by h(t), substitution —— ——>= = — (f(t) + f(t)), introducin = — asan
y h(t) ht) dt (D) + (D) 9pm=, 0

average pressure and several ssimple arrangements give
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2 o ®Rif /ot f2 0
21, G, T B &, 5 /AL Ty 3Pn 2
& b b® ra‘h®y g a a® ra‘h®

Since the functions fy(t), f,(t) are considered independent, the expressions in
parentheses must vanish. This leads to the following two simple differential equations

d fX(t) +fX2(t) - 3pm :A2 > O,
d ra’
df,(t
y() +fy2(t): 3pm:BZ>O
dt r b?
of the sametype
dy 2
— +y =C".
dt Y
The solution of the last equation for theinitial condition y(0) = 0 isasfollows
2Ct _ Ct_ -Ct
t:iInC-Fy or y(t):Ce 1:Ce € =Ctanh Ct.

Therefore,
e o e o
£(t) = 3Lf;tanh Gt Bif;%, (1) = ?ﬂ;tanh Gt BLQ%.
ra &\rac rb &\ rb g
hen

1 dht) _ dinh(t) _
h(t) dt dt

2 ) ® 0
=— 3Lg‘tanh Gt —Spr;?— —Bpr; tanh Gt L’pr; =
ra> glra®g rb®  g\rb? g

which can be integrated very easily

& 0 & 0
—In o =—[In cosh &t 3'Lg‘?ﬂncosh‘}t Big‘?].
h(t) &lra® §\rb% g
e 2 [3 20 & [3p, 0
coshé— pmjcoshé hj
aj r g b\ r 4

The time ts needed for the plate descent from hy to hy, ts = h‘l(ho), is found by
numerical solution of the equation

T

— (D) + (D)

Hence,

(9.1)

h(t) = hy.
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The dlick tire or the tire with completely worn pattern behaves like the sinking
plate whose base is equal to the contact patch. The contact area in radia tires is
rectangular approximately (Figure 5.9). The supporting road surface has ever some
roughness hg > 0 that is added to theinitial water layer height hy (Figure 9.2). Thetime
needed for descent from hg + hg to hg ists = h™(hg). If vy is the translation velocity of
the whedl and Lp the contact length, then in case ts < Lp/V; the tread reaches the road
asperities and a “dry” contact still exists. If ts 3 Lp/vy, the tire dlips on the water film
with almost zero friction. This phenomenon is caled hydroplaning. The critical speed
is

Lp

Verit = ——
s

Figure 9.2 — Descent of the tire in water layer on rough road.

In tires without tread pattern the time ts is relatively long and Vit is low. Let us
consider some dlick variants from the Tables 6.4.1 and 6.4.2 shown in Figure 6.8. Their
vertical load is Fr = 5.884kN. Corresponding results are shown in Figure 9.3.

Tread pattern increases the critical speed in dependence on groove cross-section
and depths hg. In smooth tread (hg = 0) the function h(t) is also smooth (differentiable).
When the grooved tread sinks the grooves are filled with water first. Then, in the
second stage, the tire sinks like the rectangular plate while the open grooves take part
in draining water out of contact area.

If y is the ratio of the real contact area to the whole area insides its external
rectangular contour then the volume occupied by grooves is LpxWpXx(1-y )xhg
approximately. Thus, the uniformly patterned plate sinks in the first stage like a smaller
tread block plate from hp+hg onto the level hp = hg + hg — (1-y )xhs. When hp < 0 and
therefore hg < (1-y )xhg — hr , the entire water layer is “absorbed” in tread pattern and
the danger of hydroplaning would arise only in extremely high speeds (Figure 9.4). As
soon as the grooves are flooded the second stage of tire descent starts, in which the
tread pattern drains off water through open grooves. The depth (1-y )xhg is ssimply
added to the road roughness and the time ts is determined by attaining the level of
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hg + (1-y )xhg. There must some time elapse to turn the local flow around individual
tread blocks into the flow in the global contact area.

130

120 W

110 /
100 / /

<
S /
=<
S 90
[}
a ‘/
2 g0
Q
G 70 Water layer depth h g, mm| |

60 + ¢ 4mm

8mm
50 a
40 T T T T
30 40 50 60 70 80

Aspect ratio, %

Figure 9.3 — Critical speeds for dick variants of the Section 6.4 in water layers of 4 and 8mm.
The road roughness hg = 0.8mm, tire inflation pressure 250kPa, vertical load 5884N
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Figure 9.4 — Time needed to contact the road asperities. The water layer hy=8mm; the 165/70R13 tire.
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The impact of tread pattern grooves on the critical speed Vit = Lp/ts is shown in
more detailed way in Figure 9.5.

The formula (9.1) for h(t) reflects the influence of liquid density too. As the rain
starts, the dust on highway turns into mud which has higher density than water. Figure
9.5 shows on a dlick tire that the time needed for tire/road contact is increased and,
consequently, the critical speed may decrease substantially.

Tire 165/70R13, hgr=0.8mm

Crit. speed, 200

km/h 180
m 180-200 ii(())
W 160-180
O 140-160 LAY
m 120-140 Y
80
@ 100-120
60
m 80-100
60-80 40
oo 20
0 40-60 0 4
m 20-40 Groove hg, mm
m0-20 2 4 o 0
Water ,ayer ho, mm 16

Figure 9.5 — Critical speeds for the 165/70R13 tire. Conditions p = 200kPa, F=3.15kN, y =0.7.
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Figure 9.6 — Time needed to contact the road asperities;, p = 200kPa, F=3.15kN.
Mud is assumed to have 4times higher density than water.
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Remark. The model shown here operates with the ideal liquid and is just a static one.
Therefore, it must be taken as a qualitative approximation or a vivid illustration only.
Bathelt considered viscose liquid too [62]. Tire wet traction solved by Reynolds
equation used in the theory of bearings (m= coefficient of dynamic viscosity)
°p .\ 1°p _12n dh

was published in [5]. It is obvious, however, that static models must stay far beyond
reality. To describe the movement of tire running in the water layer requires methods
of flow dynamics and adequate numerical means.

9.2 Stochastic Model for Tread Wear

The most significant factors in tire wear are: the sum of tangentia slips and the local
temperature (friction) in the tire/road interface. Both of them are closely associated
with instant meteorological conditions on the road.

The ssimplest way to ascertain the reduction of the tread thickness is to measure the
groove depth y. Let x be the total distance run in aregular wear test when vehicles run
the same course repeatedly to maintain the tangential forces and dlips on the same level
approximately.

Wear rate

dy
dx
depends on friction conditions in contact area and on mobility of tread figures as well.

In a simplified way the influence of both those factors may be assumed separated as
follows

jy=—aﬂwgwy
X

where a > 0 is aconstant, f is an integrable function and g is an increasing continuous
function, g(y) >d > 0. The physical meaning of x, y impliesthat x, y 3 O.
If (X0, Yo) denotestheinitial point, y(Xo) = Yo, and

F00=of s, Gy =g
( Ogu)

the integration of the above differential equation yields
G(y) — G(yo) =—a[F(x) —F(xo) ] -
The solution y(x) can be written as follows
y(¥) = G {G(yo) —a[F() - F(x0)]} -
Obvioudly, the tangential mobility of tread pattern blocks or ribs increases with y
increasing. Hence, g should be a non-decreasing function. If y is reduced danted
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groove walls increase the tread pattern stiffness as well as the real tire/road contact
interface. The simplest choice of g is then a polynomia of the second degree.
Moreover, it must be expected that g tends to a constant if y is small, thus

2
d“g(0) _,
dy?
Theng(y) =bg+ by?, b3 0. Letitbesimply puthy=1,i.e.
g(y) =1+by*.
Substituting this in the above equations gives
G(y) = yc\)idu =L actan (+/by) for b>0
cl+(ouw? b ’
Gy =y for b=0
and
: %tan{arctan(% Yo) - ab[F(X) - F(xo)] } b>0
yo; a,b) = | for .
i Yo - a[F(X) - F(Xo)] b=0
|

The function F is connected with the external conditions, especialy those of
weather. Its choice is a more delicate matter.

Temperature and humidity are the most obvious characteristics of weather.
Analysis of meteorological data records unveiled a considerable correlation between
relative humidity and temperature of the air (in the Middle Europe area at least [64]).
Both the quantities may be decomposed into periodic components determined by the
instant position of the Earth on its orbit around the Sun and the stochastic ones, which
can be considered to be normally distributed [11]. Autocorrelation functions showed
that the stochastic component u at the sampling period of a day may be considered as a
Markov process (autoregressive process AR(1))

u(k) = qu(k-1) + ek, 0<g<l1, k=12, ..
The random quantity e belongs to the normal distribution, el N(0, (1 —g?) var u) [11].

Using the process u for determining the values F(x) requires a convenient choice of
its parameters. Data analysis led to values

gq=0.78, s, » ~/varu » 0.19.
If visthe average distance run each day,

v= =~
N
then
var [F(x)- F(x)| = Vzvar_g_llu(i),

where N is the number of steps (days). It can be shown [64] that
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V' IN@- ¢?)- 290 Y|,
a-mzl( o®)- 2q(1- q")|

i.e. the varianceis an increasing function of N.
Therelation

var [F(x)- F(xp) = varu

to+N
F(X)- F(%)- Of (U)du = 196 |valF(x)- F(x)|
ty
can be used in modeling the wear process. Here 1.96 = upgrs is the critical vaue of
normal distribution on the significance level of 0.05 [11]. The function f representing
the weather (temperature) is [64]

2pt
365.24
where trunc(t) denotes the entire part of t (e.g. trunc(p) = 3).

Summarized up, the function y depends on two parameters a, b. But there is an
obstacle in finding their estimates by regression: heteroscedasticity. On the other hand
the minimization of the sum of equal powers of residuals is aways a well defined
problem and its solution may be found using direct methods [10].

In praxis tread wear tests are performed on homogenous sets of tires mounted with
designed exchanges in a vehicle convoy that runs along a constant route. The depths of
pattern grooves are measured and recorded periodically. Thisway a data set

{,yp):i=1,...,N;j=1, .., 3}
is obtained, where N is the number of distances a which the measurement was
performed and J; is the number of tires in ith measurement (J; is usually the same for
al i, nevertheless also the possibility of tire failure needs to be respected).

Let

f(t) = 1-0.14 cos (

+0.019) + u(trunc(t)) ,

N J,
p
Sabip) = aw alyosab)- v,
=1 j=1
where p > 0 and w; are weights that shall express the importance of ith measurement,
e.g.

LI
_ex 0

W = r>0,

XN G
to emphasize the last ones.
The function S may be geometrically interpreted as a distance of the measurement

point (Y1, .-y Y13+ s YN1s ---» Yn3,) fromthe hypersurface
H={y(x;a b):k=1,...,3;, 1+1, ..., hitdp, ..., i+ ... +In, ..., N; ¥ <a b<¥}

N
in the Euclidean space R", where n = & J; is the total number of measurements
i=1
[9,64,65]. Direct search methods have proved to be most reliable for finding the

parameters a, b.
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Example. In a specific tread wear test in car tires 165/70R13 run from late November
to early January of the next year the following data set was obtained in one of several
tread pattern and tread profile variants.

M easurement Distance Minimum groove depth
index i X, 1000km Yii, mm
0 0.00 7.05 7.09
1 4.05 5.57 5.43
2 8.80 4.80 4.46
3 12.16 3.98 3.65
4 16.21 3.37 3.12

The exponents were chosen p = r = 1, i.e. the weights were w, = X/xy. The
corresponding computer code yielded a = 0.13188 + 0.10945, b = 0.04438 + 0.06758,
the coefficient of determination R? = 0.948 and the adequacy of the model was
confirmed by the F-test ( F = SSRISSE = 2.029 < 6.39 = Fog5(2, 4) ). Modeling the
tread wear with contribution of the Markov process u(k) characterized through
parameter g = 0.78 and u T N(0, 0.19% including the confidence limits is shown in
Figure 9.7. The confidence limits for the significance level a = 0.05 [11] are drawn as
dotted lines. For the minimum groove depth yyin = 1.6mm one obtains the predicted

tread life
23 300km < X1 < 30 700km.

~
2 < ~
ynu'n' S S

0 le — -
0 10 20 30 40 50
x, 1000km

Figure 9.7 — Tread wear modeling in two 165/70R13 tires made with a special tread variant.

Comparison of the model prediction vs. experimental results, discussion on
seasonality influence, suggestions for simplifications and other details can be found in
[64].
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9.3 Experimentsin Cord/Rubber Composite Stiffness

In the first stage of research rectangular test pieces were prepared of rubberized steel
cord and vulcanized in laboratory presses. They could be made with various angles,
widths and ply numbers. When they were strained they changed their cross-section
profile, the relationship between their elongation and the corresponding tensile force
was nonlinear and there were problems to define their stiffness [66,67]. Changes of
width were mentioned in Section 3.3 and are visualized in Figure 9.8.

el (o) ely(a,)

Figure 9.8 — Cross-section bending in two layer cord/rubber composite with different cord angles.

Belt width
29mm

i

S

88mm

118mm

Carcass of the !
185SR14 tire

“~_ shoulder of
rim 5.5K x14

Figure 9.9 — Meridian curves of the same radial carcass surface with various belt radii and widths.
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To avoid problems with clamping test pieces in jaws of tensile testing machines an
especialy prepared carcass of the 185/65R14 tire was used to strain the cylindrical
belts. The belt widths were computed as the contact zone widths between belt and
radial carcass for different belt radii [68]. The cross-sections of different belt
combinations with the carcass of the 185SR14 tire are shown in Figure 9.9.

The belt stiffnessin the circumferential directionis

T(e)

K= "7,
e

where e = DC/C is the belt strain due to carcass inflation, C is belt circumference and
DC is the increase of circumference caused by the belt tension T(e). The belt stiffness
increases with the belt width nonlinearly (Figure 9.10). It might be a broken line.

2500

K =50.827770-02380W
R2=0.94758

2000

kN

1500

1000

Belt stiffness K

500

./E/
A
o

0 20 40 60 80 100 120 140
Belt width W, mm

Figure 9.10 — Nonlinear dependence of belt stiffness on belt width.

9.4 Cord Bending

Theradial carcass cords are exposed to periodic tension and bending wave during each
revolution of loaded tire. This is important especialy in steel cords because their
internal friction may produce wear of primary filaments (fretting). As shown in work
[69] this problem becomes relevant when sidewall meridional length is decreased. The
producers of steel cord are developing new cord constructions and steel composition to
reduce internal cord wear. Concerning cord bending cords with smaller diameters and,
consequently, increased numbers of carcass cords are preferable.

|
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